Loading…
Deep Petri nets of unsupervised and supervised learning
Artificial intelligence is one of the hottest research topics in computer science. In general, when it comes to the needs to perform deep learning, the most intuitive and unique implementation method is to use neural network. But there are two shortcomings in neural network. First, it is not easy to...
Saved in:
Published in: | Measurement and control (London) 2020-08, Vol.53 (7-8), p.1267-1277 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13 |
container_end_page | 1277 |
container_issue | 7-8 |
container_start_page | 1267 |
container_title | Measurement and control (London) |
container_volume | 53 |
creator | Lin, Yi-Nan Hsieh, Tsang-Yen Yang, Cheng-Ying Shen, Victor RL Juang, Tony Tong-Ying Chen, Wen-Hao |
description | Artificial intelligence is one of the hottest research topics in computer science. In general, when it comes to the needs to perform deep learning, the most intuitive and unique implementation method is to use neural network. But there are two shortcomings in neural network. First, it is not easy to be understood. When encountering the needs for implementation, it often requires a lot of relevant research efforts to implement the neural network. Second, the structure is complex. When constructing a perfect learning structure, in order to achieve the fully defined connection between nodes, the overall structure becomes complicated. It is hard for developers to track the parameter changes inside. Therefore, the goal of this article is to provide a more streamlined method so as to perform deep learning. A modified high-level fuzzy Petri net, called deep Petri net, is used to perform deep learning, in an attempt to propose a simple and easy structure and to track parameter changes, with faster speed than the deep neural network. The experimental results have shown that the deep Petri net performs better than the deep neural network. |
doi_str_mv | 10.1177/0020294020923375 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1fb48676edff4fab9157c9e736899dbb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0020294020923375</sage_id><doaj_id>oai_doaj_org_article_1fb48676edff4fab9157c9e736899dbb</doaj_id><sourcerecordid>2456125705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13</originalsourceid><addsrcrecordid>eNp1UE1LxEAMHUTBRffuseC5mvnuHGX9WljQg56HaSezdFnbOtMK_ntbKyqCOSQkee_lEULOKFxQqvUlAANmxJgN41zLA7JgIGleaA6HZDGt82l_TJYp7WCMQinF1ILoa8Que8Q-1lmDfcrakA1NGjqMb3VCn7nGZ7_aPbrY1M32lBwFt0-4_Kon5Pn25ml1n28e7tarq01eCSn6vAKPUlTCMOWEKYEr6oJA0JIa4SUH4FSW4N3kBzkDqDyVDmXhuWSB8hOynnV963a2i_WLi--2dbX9HLRxa13s62qPloZSFEor9CGI4EpDpa4Maq4KY3xZjlrns1YX29cBU2937RCb0b5lQirKpAY5omBGVbFNKWL4vkrBTt-2f789UvKZktwWf0T_xX8Ajpd7_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456125705</pqid></control><display><type>article</type><title>Deep Petri nets of unsupervised and supervised learning</title><source>Publicly Available Content Database</source><source>Sage Journals GOLD Open Access 2024</source><creator>Lin, Yi-Nan ; Hsieh, Tsang-Yen ; Yang, Cheng-Ying ; Shen, Victor RL ; Juang, Tony Tong-Ying ; Chen, Wen-Hao</creator><creatorcontrib>Lin, Yi-Nan ; Hsieh, Tsang-Yen ; Yang, Cheng-Ying ; Shen, Victor RL ; Juang, Tony Tong-Ying ; Chen, Wen-Hao</creatorcontrib><description>Artificial intelligence is one of the hottest research topics in computer science. In general, when it comes to the needs to perform deep learning, the most intuitive and unique implementation method is to use neural network. But there are two shortcomings in neural network. First, it is not easy to be understood. When encountering the needs for implementation, it often requires a lot of relevant research efforts to implement the neural network. Second, the structure is complex. When constructing a perfect learning structure, in order to achieve the fully defined connection between nodes, the overall structure becomes complicated. It is hard for developers to track the parameter changes inside. Therefore, the goal of this article is to provide a more streamlined method so as to perform deep learning. A modified high-level fuzzy Petri net, called deep Petri net, is used to perform deep learning, in an attempt to propose a simple and easy structure and to track parameter changes, with faster speed than the deep neural network. The experimental results have shown that the deep Petri net performs better than the deep neural network.</description><identifier>ISSN: 0020-2940</identifier><identifier>EISSN: 2051-8730</identifier><identifier>DOI: 10.1177/0020294020923375</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial intelligence ; Artificial neural networks ; Deep learning ; Machine learning ; Neural networks ; Parameters ; Petri nets ; Supervised learning</subject><ispartof>Measurement and control (London), 2020-08, Vol.53 (7-8), p.1267-1277</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13</citedby><cites>FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13</cites><orcidid>0000-0001-8194-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0020294020923375$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2456125705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21966,25753,27853,27924,27925,37012,44590,44945,45333</link.rule.ids></links><search><creatorcontrib>Lin, Yi-Nan</creatorcontrib><creatorcontrib>Hsieh, Tsang-Yen</creatorcontrib><creatorcontrib>Yang, Cheng-Ying</creatorcontrib><creatorcontrib>Shen, Victor RL</creatorcontrib><creatorcontrib>Juang, Tony Tong-Ying</creatorcontrib><creatorcontrib>Chen, Wen-Hao</creatorcontrib><title>Deep Petri nets of unsupervised and supervised learning</title><title>Measurement and control (London)</title><description>Artificial intelligence is one of the hottest research topics in computer science. In general, when it comes to the needs to perform deep learning, the most intuitive and unique implementation method is to use neural network. But there are two shortcomings in neural network. First, it is not easy to be understood. When encountering the needs for implementation, it often requires a lot of relevant research efforts to implement the neural network. Second, the structure is complex. When constructing a perfect learning structure, in order to achieve the fully defined connection between nodes, the overall structure becomes complicated. It is hard for developers to track the parameter changes inside. Therefore, the goal of this article is to provide a more streamlined method so as to perform deep learning. A modified high-level fuzzy Petri net, called deep Petri net, is used to perform deep learning, in an attempt to propose a simple and easy structure and to track parameter changes, with faster speed than the deep neural network. The experimental results have shown that the deep Petri net performs better than the deep neural network.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Petri nets</subject><subject>Supervised learning</subject><issn>0020-2940</issn><issn>2051-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UE1LxEAMHUTBRffuseC5mvnuHGX9WljQg56HaSezdFnbOtMK_ntbKyqCOSQkee_lEULOKFxQqvUlAANmxJgN41zLA7JgIGleaA6HZDGt82l_TJYp7WCMQinF1ILoa8Que8Q-1lmDfcrakA1NGjqMb3VCn7nGZ7_aPbrY1M32lBwFt0-4_Kon5Pn25ml1n28e7tarq01eCSn6vAKPUlTCMOWEKYEr6oJA0JIa4SUH4FSW4N3kBzkDqDyVDmXhuWSB8hOynnV963a2i_WLi--2dbX9HLRxa13s62qPloZSFEor9CGI4EpDpa4Maq4KY3xZjlrns1YX29cBU2937RCb0b5lQirKpAY5omBGVbFNKWL4vkrBTt-2f789UvKZktwWf0T_xX8Ajpd7_g</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Lin, Yi-Nan</creator><creator>Hsieh, Tsang-Yen</creator><creator>Yang, Cheng-Ying</creator><creator>Shen, Victor RL</creator><creator>Juang, Tony Tong-Ying</creator><creator>Chen, Wen-Hao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8194-3446</orcidid></search><sort><creationdate>20200801</creationdate><title>Deep Petri nets of unsupervised and supervised learning</title><author>Lin, Yi-Nan ; Hsieh, Tsang-Yen ; Yang, Cheng-Ying ; Shen, Victor RL ; Juang, Tony Tong-Ying ; Chen, Wen-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Petri nets</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yi-Nan</creatorcontrib><creatorcontrib>Hsieh, Tsang-Yen</creatorcontrib><creatorcontrib>Yang, Cheng-Ying</creatorcontrib><creatorcontrib>Shen, Victor RL</creatorcontrib><creatorcontrib>Juang, Tony Tong-Ying</creatorcontrib><creatorcontrib>Chen, Wen-Hao</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Measurement and control (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yi-Nan</au><au>Hsieh, Tsang-Yen</au><au>Yang, Cheng-Ying</au><au>Shen, Victor RL</au><au>Juang, Tony Tong-Ying</au><au>Chen, Wen-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Petri nets of unsupervised and supervised learning</atitle><jtitle>Measurement and control (London)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>53</volume><issue>7-8</issue><spage>1267</spage><epage>1277</epage><pages>1267-1277</pages><issn>0020-2940</issn><eissn>2051-8730</eissn><abstract>Artificial intelligence is one of the hottest research topics in computer science. In general, when it comes to the needs to perform deep learning, the most intuitive and unique implementation method is to use neural network. But there are two shortcomings in neural network. First, it is not easy to be understood. When encountering the needs for implementation, it often requires a lot of relevant research efforts to implement the neural network. Second, the structure is complex. When constructing a perfect learning structure, in order to achieve the fully defined connection between nodes, the overall structure becomes complicated. It is hard for developers to track the parameter changes inside. Therefore, the goal of this article is to provide a more streamlined method so as to perform deep learning. A modified high-level fuzzy Petri net, called deep Petri net, is used to perform deep learning, in an attempt to propose a simple and easy structure and to track parameter changes, with faster speed than the deep neural network. The experimental results have shown that the deep Petri net performs better than the deep neural network.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0020294020923375</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8194-3446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-2940 |
ispartof | Measurement and control (London), 2020-08, Vol.53 (7-8), p.1267-1277 |
issn | 0020-2940 2051-8730 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1fb48676edff4fab9157c9e736899dbb |
source | Publicly Available Content Database; Sage Journals GOLD Open Access 2024 |
subjects | Artificial intelligence Artificial neural networks Deep learning Machine learning Neural networks Parameters Petri nets Supervised learning |
title | Deep Petri nets of unsupervised and supervised learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Petri%20nets%20of%20unsupervised%20and%20supervised%20learning&rft.jtitle=Measurement%20and%20control%20(London)&rft.au=Lin,%20Yi-Nan&rft.date=2020-08-01&rft.volume=53&rft.issue=7-8&rft.spage=1267&rft.epage=1277&rft.pages=1267-1277&rft.issn=0020-2940&rft.eissn=2051-8730&rft_id=info:doi/10.1177/0020294020923375&rft_dat=%3Cproquest_doaj_%3E2456125705%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-c0de54c4926a49b0361af4e075194d5300315b0da8666e3200cd15ae58d352f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2456125705&rft_id=info:pmid/&rft_sage_id=10.1177_0020294020923375&rfr_iscdi=true |