Loading…

A Mixed-Reality Tele-Operation Method for High-Level Control of a Legged-Manipulator Robot

In recent years, legged (quadruped) robots have been subject of technological study and continuous development. These robots have a leading role in applications that require high mobility skills in complex terrain, as is the case of Search and Rescue (SAR). These robots stand out for their ability t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (21), p.8146
Main Authors: Cruz Ulloa, Christyan, DomĂ­nguez, David, Del Cerro, Jaime, Barrientos, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, legged (quadruped) robots have been subject of technological study and continuous development. These robots have a leading role in applications that require high mobility skills in complex terrain, as is the case of Search and Rescue (SAR). These robots stand out for their ability to adapt to different terrains, overcome obstacles and move within unstructured environments. Most of the implementations recently developed are focused on data collecting with sensors, such as lidar or cameras. This work seeks to integrate a 6DoF arm manipulator to the quadruped robot ARTU-R (A1 Rescue Tasks UPM Robot) by Unitree to perform manipulation tasks in SAR environments. The main contribution of this work is focused on the High-level control of the robotic set (Legged + Manipulator) using Mixed-Reality (MR). An optimization phase of the robotic set workspace has been previously developed in Matlab for the implementation, as well as a simulation phase in Gazebo to verify the dynamic functionality of the set in reconstructed environments. The first and second generation of Hololens glasses have been used and contrasted with a conventional interface to develop the MR control part of the proposed method. Manipulations of first aid equipment have been carried out to evaluate the proposed method. The main results show that the proposed method allows better control of the robotic set than conventional interfaces, improving the operator efficiency in performing robotic handling tasks and increasing confidence in decision-making. On the other hand, Hololens 2 showed a better user experience concerning graphics and latency time.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22218146