Loading…
Ni Doping: A Viable Route to Make Body-Centered-Cubic Fe Stable at Earth’s Inner Core
With the goal of answering the highly debated question of whether the presence of Ni at the Earth’s inner core can make body-centered cubic (bcc) Fe stable, we performed a computational study based on first-principles calculations on bcc, hexagonal closed packed (hcp), and face-centered cubic (fcc)...
Saved in:
Published in: | Minerals (Basel) 2021-03, Vol.11 (3), p.258 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the goal of answering the highly debated question of whether the presence of Ni at the Earth’s inner core can make body-centered cubic (bcc) Fe stable, we performed a computational study based on first-principles calculations on bcc, hexagonal closed packed (hcp), and face-centered cubic (fcc) structures of the Fe1−xNix alloys (x = 0, 0.0312, 0.042, 0.0625, 0.084, 0.125, 0.14, 0.175) at 200–364 GPa and investigated their relative stability. Our thorough study reveals that the stability of Ni-doped bcc Fe is crucially dependent on the nature of the distribution of Ni in the Fe matrix. We confirm this observation by considering several possible configurations for a given concentration of Ni doping. Our theoretical evidence suggests that Ni-doped bcc Fe could be a stable phase at the Earth’s inner core condition as compared to its hcp and fcc counterparts. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min11030258 |