Loading…
Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops
Drought is a global water shortage problem which poses challenge to crop productivity. Novel strategies are being tried to find out solution to sustain agriculture under drought conditions. Rhizobacteriome is an exclusive genetic material of bacteria resident to rhizosphere plays critical role to he...
Saved in:
Published in: | Journal of pure & applied microbiology : an international research journal of microbiology 2020-03, Vol.14 (1), p.73-92 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drought is a global water shortage problem which poses challenge to crop productivity. Novel strategies are being tried to find out solution to sustain agriculture under drought conditions. Rhizobacteriome is an exclusive genetic material of bacteria resident to rhizosphere plays critical role to health and yield of plant. The interaction of rhizobacteriome with plant provides basis for protecting plants from various abiotic and biotic stresses. Plant growth promoting rhizobacteria (PGPR) are root-colonizing bacteria which produce array of enzymes and metabolites that assist plants to withstand harsh environmental conditions. Various formulations of rhizobacteria are being applied to enhance the tolerance or endurance to drought in crops which in turn increase crop productivity. This could be a one of the promising methods with wide potentiality to improve the growth and yield of crops under limited water resources and changing climatic conditions to ensure food security of the globe. In this review, we summarize (1) existing knowledge and understanding about the rhizobacteria, (2) their role in imparting tolerance to crops in drought conditions and (3) discuss future line of work in this frontier research area. Keywords: Rhizobacteriome, bacteria- plant interactions, rhizosphere, drought stress, ACC deaminase, rhizobacteria |
---|---|
ISSN: | 0973-7510 2581-690X |
DOI: | 10.22207/JPAM.14.1.10 |