Loading…

Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects

To demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5-23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; with...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-02, Vol.26 (4), p.1146
Main Authors: Kamnev, Alexander A, Dyatlova, Yulia A, Kenzhegulov, Odissey A, Vladimirova, Anastasiya A, Mamchenkova, Polina V, Tugarova, Anna V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To demonstrate the importance of sample preparation used in Fourier transform infrared (FTIR) spectroscopy of microbiological materials, bacterial biomass samples with and without grinding and after different drying periods (1.5-23 h at 45 °C), as well as biogenic selenium nanoparticles (SeNPs; without washing and after one to three washing steps) were comparatively studied by transmission FTIR spectroscopy. For preparing bacterial biomass samples, Sp7 and Sp245 (earlier known as Sp245) were used. The SeNPs were obtained using Sp7 incubated with selenite. Grinding of the biomass samples was shown to result in slight downshifting of the bands related to cellular poly-3-hydroxybutyrate (PHB) present in the samples in small amounts (under ~10%), reflecting its partial crystallisation. Drying for 23 h was shown to give more reproducible FTIR spectra of bacterial samples. SeNPs were shown to contain capping layers of proteins, polysaccharides and lipids. The as-prepared SeNPs contained significant amounts of carboxylated components in their bioorganic capping, which appeared to be weakly bound and were largely removed after washing. Spectroscopic characteristics and changes induced by various sample preparation steps are discussed with regard to optimising sample treatment procedures for FTIR spectroscopic analyses of microbiological specimens.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26041146