Loading…
Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency
Mid-field wireless power transfer (WPT) offers a compelling solution for delivering power to miniature implantable medical devices deep within the human body. Despite its potential, the current power delivery levels remain constrained, and the design of a compact source structure to focus the transm...
Saved in:
Published in: | Symmetry (Basel) 2024-06, Vol.16 (6), p.753 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mid-field wireless power transfer (WPT) offers a compelling solution for delivering power to miniature implantable medical devices deep within the human body. Despite its potential, the current power delivery levels remain constrained, and the design of a compact source structure to focus the transmitter field on such implants presents significant challenges. In this paper, a novel miniaturized transmitter antenna operating at 1.71 GHz is proposed. Leveraging the antenna proximity-coupled feeding technique, we achieve optimal current distribution for efficient power transfer. Additionally, a receiver integrated within the human body is proposed, comprising a slotted ground and a meandering slotted radiating element. This receiver is excited via a coaxial feedline with a truncated ground. Our findings demonstrate wireless power transfer of −23 dB (0.501%) at a distance of 30 mm between the transmitter and receiver, alongside a peak gain of −20 dB with an impedance bandwidth of 39.61%. These results highlight promising advancements in enhancing energy transfer efficiency for deep-implant applications. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym16060753 |