Loading…
Exon Shuffling and Origin of Scorpion Venom Biodiversity
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins w...
Saved in:
Published in: | Toxins 2017-01, Vol.9 (1), p.10-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253 |
---|---|
cites | cdi_FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 10 |
container_title | Toxins |
container_volume | 9 |
creator | Wang, Xueli Gao, Bin Zhu, Shunyi |
description | Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences. |
doi_str_mv | 10.3390/toxins9010010 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2054763e58154b8ab80f3eff6167b6d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2054763e58154b8ab80f3eff6167b6d9</doaj_id><sourcerecordid>1854612992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253</originalsourceid><addsrcrecordid>eNqNks9rFTEQgBdRbKk9epUFL17WTn5u9iJoqVoo9NDiNSTZyWse-5Jnslva_97UV0tfT4ZAhuTjY2YyTfOewGfGBjiZ012IZQACdb9qDin0tJNSkNfP4oPmuJQ11MUYGUj_tjmgCpgYhDhs1Nldiu3VzeL9FOKqNXFsL3NYhdgm3165lLehAr8wpk37LaQx3GIuYb5_17zxZip4_HgeNdffz65Pf3YXlz_OT79edE4QPndeWQRwXGJPwKJyNbbcAeV2lIDGgaVYc-HCSNF7FHYcHAccOeklFeyoOd9px2TWepvDxuR7nUzQfy9SXmmT5-Am1BQE7yVDoYjgVhmrwDP0XhLZWzkO1fVl59oudoOjwzhnM-1J919iuNGrdKsFA0U5q4JPj4Kcfi9YZr0JxeE0mYhpKZooqRgVgvX_gQouCR0GWtGPL9B1WnKsTa2UopQrqh4a0e0ol1MpGf1T3gT0wzDovWGo_IfnxT7R_76e_QGTwq8i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882248285</pqid></control><display><type>article</type><title>Exon Shuffling and Origin of Scorpion Venom Biodiversity</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><creator>Wang, Xueli ; Gao, Bin ; Zhu, Shunyi</creator><creatorcontrib>Wang, Xueli ; Gao, Bin ; Zhu, Shunyi</creatorcontrib><description>Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.</description><identifier>ISSN: 2072-6651</identifier><identifier>EISSN: 2072-6651</identifier><identifier>DOI: 10.3390/toxins9010010</identifier><identifier>PMID: 28035955</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antimicrobial peptides ; Biodiversity ; Combinatorial analysis ; exon shuffling ; exon-intron structure ; Exons ; Gene Library ; Gene sequencing ; Genes ; Introns ; Ion channels ; Libraries ; molecular diversity ; Neural coding ; Neurotoxins ; Neurotoxins - chemistry ; Neurotoxins - genetics ; Nucleotide sequence ; Nucleotides ; Peptides ; Peptides - chemistry ; Protease inhibitors ; Protein arrays ; Protein Conformation ; Proteinase inhibitors ; Proteins ; Proteomics ; Pyridine nucleotide reductase ; Recombination, Genetic ; Recruitment ; Regulatory sequences ; scorpion venom ; Scorpion Venoms - chemistry ; Scorpion Venoms - genetics ; Scorpions ; Toxins ; Transcriptome ; Venom ; Venom gland</subject><ispartof>Toxins, 2017-01, Vol.9 (1), p.10-10</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2016 by the authors; licensee MDPI, Basel, Switzerland. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253</citedby><cites>FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1882248285/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1882248285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28035955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xueli</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Zhu, Shunyi</creatorcontrib><title>Exon Shuffling and Origin of Scorpion Venom Biodiversity</title><title>Toxins</title><addtitle>Toxins (Basel)</addtitle><description>Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.</description><subject>Animals</subject><subject>Antimicrobial peptides</subject><subject>Biodiversity</subject><subject>Combinatorial analysis</subject><subject>exon shuffling</subject><subject>exon-intron structure</subject><subject>Exons</subject><subject>Gene Library</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Introns</subject><subject>Ion channels</subject><subject>Libraries</subject><subject>molecular diversity</subject><subject>Neural coding</subject><subject>Neurotoxins</subject><subject>Neurotoxins - chemistry</subject><subject>Neurotoxins - genetics</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protease inhibitors</subject><subject>Protein arrays</subject><subject>Protein Conformation</subject><subject>Proteinase inhibitors</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Pyridine nucleotide reductase</subject><subject>Recombination, Genetic</subject><subject>Recruitment</subject><subject>Regulatory sequences</subject><subject>scorpion venom</subject><subject>Scorpion Venoms - chemistry</subject><subject>Scorpion Venoms - genetics</subject><subject>Scorpions</subject><subject>Toxins</subject><subject>Transcriptome</subject><subject>Venom</subject><subject>Venom gland</subject><issn>2072-6651</issn><issn>2072-6651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9rFTEQgBdRbKk9epUFL17WTn5u9iJoqVoo9NDiNSTZyWse-5Jnslva_97UV0tfT4ZAhuTjY2YyTfOewGfGBjiZ012IZQACdb9qDin0tJNSkNfP4oPmuJQ11MUYGUj_tjmgCpgYhDhs1Nldiu3VzeL9FOKqNXFsL3NYhdgm3165lLehAr8wpk37LaQx3GIuYb5_17zxZip4_HgeNdffz65Pf3YXlz_OT79edE4QPndeWQRwXGJPwKJyNbbcAeV2lIDGgaVYc-HCSNF7FHYcHAccOeklFeyoOd9px2TWepvDxuR7nUzQfy9SXmmT5-Am1BQE7yVDoYjgVhmrwDP0XhLZWzkO1fVl59oudoOjwzhnM-1J919iuNGrdKsFA0U5q4JPj4Kcfi9YZr0JxeE0mYhpKZooqRgVgvX_gQouCR0GWtGPL9B1WnKsTa2UopQrqh4a0e0ol1MpGf1T3gT0wzDovWGo_IfnxT7R_76e_QGTwq8i</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wang, Xueli</creator><creator>Gao, Bin</creator><creator>Zhu, Shunyi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170101</creationdate><title>Exon Shuffling and Origin of Scorpion Venom Biodiversity</title><author>Wang, Xueli ; Gao, Bin ; Zhu, Shunyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antimicrobial peptides</topic><topic>Biodiversity</topic><topic>Combinatorial analysis</topic><topic>exon shuffling</topic><topic>exon-intron structure</topic><topic>Exons</topic><topic>Gene Library</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Introns</topic><topic>Ion channels</topic><topic>Libraries</topic><topic>molecular diversity</topic><topic>Neural coding</topic><topic>Neurotoxins</topic><topic>Neurotoxins - chemistry</topic><topic>Neurotoxins - genetics</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protease inhibitors</topic><topic>Protein arrays</topic><topic>Protein Conformation</topic><topic>Proteinase inhibitors</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Pyridine nucleotide reductase</topic><topic>Recombination, Genetic</topic><topic>Recruitment</topic><topic>Regulatory sequences</topic><topic>scorpion venom</topic><topic>Scorpion Venoms - chemistry</topic><topic>Scorpion Venoms - genetics</topic><topic>Scorpions</topic><topic>Toxins</topic><topic>Transcriptome</topic><topic>Venom</topic><topic>Venom gland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xueli</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Zhu, Shunyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Toxins</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xueli</au><au>Gao, Bin</au><au>Zhu, Shunyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exon Shuffling and Origin of Scorpion Venom Biodiversity</atitle><jtitle>Toxins</jtitle><addtitle>Toxins (Basel)</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>10</spage><epage>10</epage><pages>10-10</pages><issn>2072-6651</issn><eissn>2072-6651</eissn><abstract>Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28035955</pmid><doi>10.3390/toxins9010010</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6651 |
ispartof | Toxins, 2017-01, Vol.9 (1), p.10-10 |
issn | 2072-6651 2072-6651 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2054763e58154b8ab80f3eff6167b6d9 |
source | PubMed Central Free; Publicly Available Content (ProQuest); IngentaConnect Journals |
subjects | Animals Antimicrobial peptides Biodiversity Combinatorial analysis exon shuffling exon-intron structure Exons Gene Library Gene sequencing Genes Introns Ion channels Libraries molecular diversity Neural coding Neurotoxins Neurotoxins - chemistry Neurotoxins - genetics Nucleotide sequence Nucleotides Peptides Peptides - chemistry Protease inhibitors Protein arrays Protein Conformation Proteinase inhibitors Proteins Proteomics Pyridine nucleotide reductase Recombination, Genetic Recruitment Regulatory sequences scorpion venom Scorpion Venoms - chemistry Scorpion Venoms - genetics Scorpions Toxins Transcriptome Venom Venom gland |
title | Exon Shuffling and Origin of Scorpion Venom Biodiversity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exon%20Shuffling%20and%20Origin%20of%20Scorpion%20Venom%20Biodiversity&rft.jtitle=Toxins&rft.au=Wang,%20Xueli&rft.date=2017-01-01&rft.volume=9&rft.issue=1&rft.spage=10&rft.epage=10&rft.pages=10-10&rft.issn=2072-6651&rft.eissn=2072-6651&rft_id=info:doi/10.3390/toxins9010010&rft_dat=%3Cproquest_doaj_%3E1854612992%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-f8be00c46e710be8c0c4b4c024bd60eac0b2e35945a657fe5bd9c40ed4176253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1882248285&rft_id=info:pmid/28035955&rfr_iscdi=true |