Loading…
Magnetic solid phase extraction of Sunitinib malate in urine samples assisted with mixed hemimicelle and spectrophotometric detection
The mixed hemimicelle-based solid phase extraction method using the coated sodium dodecyl sulfate by magnetic iron oxide nanoparticles as adsorbent was developed for extraction and determination of Sunitinib malate in real samples prior to determination by UV–Visible spectrophotometry. For the chara...
Saved in:
Published in: | Scientific reports 2023-02, Vol.13 (1), p.3361-3361, Article 3361 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mixed hemimicelle-based solid phase extraction method using the coated sodium dodecyl sulfate by magnetic iron oxide nanoparticles as adsorbent was developed for extraction and determination of Sunitinib malate in real samples prior to determination by UV–Visible spectrophotometry. For the characterization of synthesized nanoparticles, Fourier transform infrared spectroscopy, and scanning electron microscopy was used. The influences of different factors affecting the extraction efficiency of Sunitinib malate, including the pH, the adsorbent amount, the volume and eluent type, the amount of the surfactant, the ionic strength, extraction, and desorption time, were investigated. At the optimized conditions, a good linearity with correlation coefficients of 0.998 and 0.999 was obtained over the concentration ranges of 1–22 and 1–19 µg/mL for water and urine samples, in order. The good recoveries of 97% and 99% and also, the limits of detection equal with 0.9, and 0.8 µg/mL for water and urine samples were enhanced, respectively. These results demonstrate that mixed hemimicelle solid phase extraction is a fast, efficient, economical and selective sample preparation method for the extraction and determination of Sunitinib malate in different water and urine sample solutions. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-30404-6 |