Loading…

Na-Doping Effects on Thermoelectric Properties of Cu2−xSe Nanoplates

For this work, a β-phase Cu2−xSe nanowire and nanoplate, and a Na-doped Cu2−xSe nanoplate were successfully synthesized using solution syntheses. The morphologies of the Cu2−xSe nanowire and nanoplate could be easily controlled by changing the synthetic condition. The Na-doped Cu2−xSe nanoplate was...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2018-01, Vol.8 (1), p.12
Main Authors: Jin, Yingshi, Han, Mi-Kyung, Kim, Sung-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For this work, a β-phase Cu2−xSe nanowire and nanoplate, and a Na-doped Cu2−xSe nanoplate were successfully synthesized using solution syntheses. The morphologies of the Cu2−xSe nanowire and nanoplate could be easily controlled by changing the synthetic condition. The Na-doped Cu2−xSe nanoplate was prepared by a simple treatment of the Cu2−xSe nanoplate with a sodium hydroxide-ethylene glycol solution. The nanopowders were then consolidated to bulk materials using spark plasma sintering (SPS). The phase structure and the microstructure of all of the samples were checked using X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), and scanning electron microscope (SEM) analyses. The thermoelectric transport properties, such as the electrical conductivity, Seebeck coefficient, carrier concentration, carrier mobility, and thermal conductivity, were measured at temperature ranges from 323 to 673 K. The results show that Na played two important roles: one is reducing the carrier concentration, thereby improving the Seebeck coefficient, the other is reducing the thermal conductivity. Overall, the maximum thermoelectric figure of merit (ZT) of 0.24 was achieved at 673 K in the Na-doped Cu2−xSe nanoplate.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8010012