Loading…

Microscale sensor solution for data collection from fibre-matrix interfaces

Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-04, Vol.11 (1), p.8346-8346, Article 8346
Main Authors: Dsouza, Royson, Antunes, Paulo, Kakkonen, Markus, Tanhuanpää, Olli, Laurikainen, Pekka, Javanshour, Farzin, Kallio, Pasi, Kanerva, Mikko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53
cites cdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53
container_end_page 8346
container_issue 1
container_start_page 8346
container_title Scientific reports
container_volume 11
creator Dsouza, Royson
Antunes, Paulo
Kakkonen, Markus
Tanhuanpää, Olli
Laurikainen, Pekka
Javanshour, Farzin
Kallio, Pasi
Kanerva, Mikko
description Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as 7 μ m , making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.
doi_str_mv 10.1038/s41598-021-87723-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_20a2f907115e4e809ce7aa1bdd663a40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20a2f907115e4e809ce7aa1bdd663a40</doaj_id><sourcerecordid>2514606469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</originalsourceid><addsrcrecordid>eNp9kTtv1jAUhiMEolXpH2BAkVhYAr4nXpBQBW1Fqy5ltnw5_vAnJy52guDf4zSltAz14tvj59h-m-Y1Ru8xosOHwjCXQ4cI7oa-J7STz5pDghjvCCXk-YPxQXNcyh7VxolkWL5sDigdBJVMHjZfL4PNqVgdoS0wlZTbkuIyhzS1vk6cnnVrU4xgt7WcxtYHk6Eb9ZzDrzZMM2SvLZRXzQuvY4Hju_6o-fbl8_XJWXdxdXp-8umis5yhuTNMGusYp-CoZs4ibzxHxA_SGYe9sEYOhmOqvaVWMNBCYCx7juzgVpQeNeeb1yW9Vzc5jDr_VkkHdbuQ8k7pPAcbQRGkiZeox5gDgwFJC73W2DgnRC2Oquvj5rpZzAjOwjRnHR9JH-9M4bvapZ9qqL_JWF8F7-4EOf1YoMxqDMVCjHqCtBRFOGYCCSZkRd_-h-7Tkqf6VStFGSa8x5UiG7XmUjL4-8tgpNbo1Ra9qtGr2-jVqn7z8Bn3R_4GXQG6AaVuTTvI_2o_of0DsQm7Gg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513412571</pqid></control><display><type>article</type><title>Microscale sensor solution for data collection from fibre-matrix interfaces</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dsouza, Royson ; Antunes, Paulo ; Kakkonen, Markus ; Tanhuanpää, Olli ; Laurikainen, Pekka ; Javanshour, Farzin ; Kallio, Pasi ; Kanerva, Mikko</creator><creatorcontrib>Dsouza, Royson ; Antunes, Paulo ; Kakkonen, Markus ; Tanhuanpää, Olli ; Laurikainen, Pekka ; Javanshour, Farzin ; Kallio, Pasi ; Kanerva, Mikko</creatorcontrib><description>Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as 7 μ m , making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-87723-9</identifier><identifier>PMID: 33863949</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/930 ; 639/624/1020 ; Accuracy ; Data collection ; Dental restorative materials ; Filaments ; Fourier transforms ; Humanities and Social Sciences ; Interfaces ; Lasers ; Mathematical models ; Medical research ; multidisciplinary ; Polymers ; Science ; Science (multidisciplinary) ; Sensors ; Strain gauges</subject><ispartof>Scientific reports, 2021-04, Vol.11 (1), p.8346-8346, Article 8346</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</citedby><cites>FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2513412571/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2513412571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33863949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dsouza, Royson</creatorcontrib><creatorcontrib>Antunes, Paulo</creatorcontrib><creatorcontrib>Kakkonen, Markus</creatorcontrib><creatorcontrib>Tanhuanpää, Olli</creatorcontrib><creatorcontrib>Laurikainen, Pekka</creatorcontrib><creatorcontrib>Javanshour, Farzin</creatorcontrib><creatorcontrib>Kallio, Pasi</creatorcontrib><creatorcontrib>Kanerva, Mikko</creatorcontrib><title>Microscale sensor solution for data collection from fibre-matrix interfaces</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as 7 μ m , making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.</description><subject>639/166/988</subject><subject>639/301/930</subject><subject>639/624/1020</subject><subject>Accuracy</subject><subject>Data collection</subject><subject>Dental restorative materials</subject><subject>Filaments</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Strain gauges</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtv1jAUhiMEolXpH2BAkVhYAr4nXpBQBW1Fqy5ltnw5_vAnJy52guDf4zSltAz14tvj59h-m-Y1Ru8xosOHwjCXQ4cI7oa-J7STz5pDghjvCCXk-YPxQXNcyh7VxolkWL5sDigdBJVMHjZfL4PNqVgdoS0wlZTbkuIyhzS1vk6cnnVrU4xgt7WcxtYHk6Eb9ZzDrzZMM2SvLZRXzQuvY4Hju_6o-fbl8_XJWXdxdXp-8umis5yhuTNMGusYp-CoZs4ibzxHxA_SGYe9sEYOhmOqvaVWMNBCYCx7juzgVpQeNeeb1yW9Vzc5jDr_VkkHdbuQ8k7pPAcbQRGkiZeox5gDgwFJC73W2DgnRC2Oquvj5rpZzAjOwjRnHR9JH-9M4bvapZ9qqL_JWF8F7-4EOf1YoMxqDMVCjHqCtBRFOGYCCSZkRd_-h-7Tkqf6VStFGSa8x5UiG7XmUjL4-8tgpNbo1Ra9qtGr2-jVqn7z8Bn3R_4GXQG6AaVuTTvI_2o_of0DsQm7Gg</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Dsouza, Royson</creator><creator>Antunes, Paulo</creator><creator>Kakkonen, Markus</creator><creator>Tanhuanpää, Olli</creator><creator>Laurikainen, Pekka</creator><creator>Javanshour, Farzin</creator><creator>Kallio, Pasi</creator><creator>Kanerva, Mikko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210416</creationdate><title>Microscale sensor solution for data collection from fibre-matrix interfaces</title><author>Dsouza, Royson ; Antunes, Paulo ; Kakkonen, Markus ; Tanhuanpää, Olli ; Laurikainen, Pekka ; Javanshour, Farzin ; Kallio, Pasi ; Kanerva, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/988</topic><topic>639/301/930</topic><topic>639/624/1020</topic><topic>Accuracy</topic><topic>Data collection</topic><topic>Dental restorative materials</topic><topic>Filaments</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Strain gauges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dsouza, Royson</creatorcontrib><creatorcontrib>Antunes, Paulo</creatorcontrib><creatorcontrib>Kakkonen, Markus</creatorcontrib><creatorcontrib>Tanhuanpää, Olli</creatorcontrib><creatorcontrib>Laurikainen, Pekka</creatorcontrib><creatorcontrib>Javanshour, Farzin</creatorcontrib><creatorcontrib>Kallio, Pasi</creatorcontrib><creatorcontrib>Kanerva, Mikko</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dsouza, Royson</au><au>Antunes, Paulo</au><au>Kakkonen, Markus</au><au>Tanhuanpää, Olli</au><au>Laurikainen, Pekka</au><au>Javanshour, Farzin</au><au>Kallio, Pasi</au><au>Kanerva, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscale sensor solution for data collection from fibre-matrix interfaces</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>8346</spage><epage>8346</epage><pages>8346-8346</pages><artnum>8346</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as 7 μ m , making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33863949</pmid><doi>10.1038/s41598-021-87723-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-04, Vol.11 (1), p.8346-8346, Article 8346
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_20a2f907115e4e809ce7aa1bdd663a40
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/988
639/301/930
639/624/1020
Accuracy
Data collection
Dental restorative materials
Filaments
Fourier transforms
Humanities and Social Sciences
Interfaces
Lasers
Mathematical models
Medical research
multidisciplinary
Polymers
Science
Science (multidisciplinary)
Sensors
Strain gauges
title Microscale sensor solution for data collection from fibre-matrix interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscale%20sensor%20solution%20for%20data%20collection%20from%20fibre-matrix%20interfaces&rft.jtitle=Scientific%20reports&rft.au=Dsouza,%20Royson&rft.date=2021-04-16&rft.volume=11&rft.issue=1&rft.spage=8346&rft.epage=8346&rft.pages=8346-8346&rft.artnum=8346&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-87723-9&rft_dat=%3Cproquest_doaj_%3E2514606469%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2513412571&rft_id=info:pmid/33863949&rfr_iscdi=true