Loading…
Microscale sensor solution for data collection from fibre-matrix interfaces
Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called...
Saved in:
Published in: | Scientific reports 2021-04, Vol.11 (1), p.8346-8346, Article 8346 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53 |
container_end_page | 8346 |
container_issue | 1 |
container_start_page | 8346 |
container_title | Scientific reports |
container_volume | 11 |
creator | Dsouza, Royson Antunes, Paulo Kakkonen, Markus Tanhuanpää, Olli Laurikainen, Pekka Javanshour, Farzin Kallio, Pasi Kanerva, Mikko |
description | Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as
7
μ
m
, making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens. |
doi_str_mv | 10.1038/s41598-021-87723-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_20a2f907115e4e809ce7aa1bdd663a40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20a2f907115e4e809ce7aa1bdd663a40</doaj_id><sourcerecordid>2514606469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</originalsourceid><addsrcrecordid>eNp9kTtv1jAUhiMEolXpH2BAkVhYAr4nXpBQBW1Fqy5ltnw5_vAnJy52guDf4zSltAz14tvj59h-m-Y1Ru8xosOHwjCXQ4cI7oa-J7STz5pDghjvCCXk-YPxQXNcyh7VxolkWL5sDigdBJVMHjZfL4PNqVgdoS0wlZTbkuIyhzS1vk6cnnVrU4xgt7WcxtYHk6Eb9ZzDrzZMM2SvLZRXzQuvY4Hju_6o-fbl8_XJWXdxdXp-8umis5yhuTNMGusYp-CoZs4ibzxHxA_SGYe9sEYOhmOqvaVWMNBCYCx7juzgVpQeNeeb1yW9Vzc5jDr_VkkHdbuQ8k7pPAcbQRGkiZeox5gDgwFJC73W2DgnRC2Oquvj5rpZzAjOwjRnHR9JH-9M4bvapZ9qqL_JWF8F7-4EOf1YoMxqDMVCjHqCtBRFOGYCCSZkRd_-h-7Tkqf6VStFGSa8x5UiG7XmUjL4-8tgpNbo1Ra9qtGr2-jVqn7z8Bn3R_4GXQG6AaVuTTvI_2o_of0DsQm7Gg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513412571</pqid></control><display><type>article</type><title>Microscale sensor solution for data collection from fibre-matrix interfaces</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Dsouza, Royson ; Antunes, Paulo ; Kakkonen, Markus ; Tanhuanpää, Olli ; Laurikainen, Pekka ; Javanshour, Farzin ; Kallio, Pasi ; Kanerva, Mikko</creator><creatorcontrib>Dsouza, Royson ; Antunes, Paulo ; Kakkonen, Markus ; Tanhuanpää, Olli ; Laurikainen, Pekka ; Javanshour, Farzin ; Kallio, Pasi ; Kanerva, Mikko</creatorcontrib><description>Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as
7
μ
m
, making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-87723-9</identifier><identifier>PMID: 33863949</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/930 ; 639/624/1020 ; Accuracy ; Data collection ; Dental restorative materials ; Filaments ; Fourier transforms ; Humanities and Social Sciences ; Interfaces ; Lasers ; Mathematical models ; Medical research ; multidisciplinary ; Polymers ; Science ; Science (multidisciplinary) ; Sensors ; Strain gauges</subject><ispartof>Scientific reports, 2021-04, Vol.11 (1), p.8346-8346, Article 8346</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</citedby><cites>FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2513412571/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2513412571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33863949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dsouza, Royson</creatorcontrib><creatorcontrib>Antunes, Paulo</creatorcontrib><creatorcontrib>Kakkonen, Markus</creatorcontrib><creatorcontrib>Tanhuanpää, Olli</creatorcontrib><creatorcontrib>Laurikainen, Pekka</creatorcontrib><creatorcontrib>Javanshour, Farzin</creatorcontrib><creatorcontrib>Kallio, Pasi</creatorcontrib><creatorcontrib>Kanerva, Mikko</creatorcontrib><title>Microscale sensor solution for data collection from fibre-matrix interfaces</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as
7
μ
m
, making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.</description><subject>639/166/988</subject><subject>639/301/930</subject><subject>639/624/1020</subject><subject>Accuracy</subject><subject>Data collection</subject><subject>Dental restorative materials</subject><subject>Filaments</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>multidisciplinary</subject><subject>Polymers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Strain gauges</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtv1jAUhiMEolXpH2BAkVhYAr4nXpBQBW1Fqy5ltnw5_vAnJy52guDf4zSltAz14tvj59h-m-Y1Ru8xosOHwjCXQ4cI7oa-J7STz5pDghjvCCXk-YPxQXNcyh7VxolkWL5sDigdBJVMHjZfL4PNqVgdoS0wlZTbkuIyhzS1vk6cnnVrU4xgt7WcxtYHk6Eb9ZzDrzZMM2SvLZRXzQuvY4Hju_6o-fbl8_XJWXdxdXp-8umis5yhuTNMGusYp-CoZs4ibzxHxA_SGYe9sEYOhmOqvaVWMNBCYCx7juzgVpQeNeeb1yW9Vzc5jDr_VkkHdbuQ8k7pPAcbQRGkiZeox5gDgwFJC73W2DgnRC2Oquvj5rpZzAjOwjRnHR9JH-9M4bvapZ9qqL_JWF8F7-4EOf1YoMxqDMVCjHqCtBRFOGYCCSZkRd_-h-7Tkqf6VStFGSa8x5UiG7XmUjL4-8tgpNbo1Ra9qtGr2-jVqn7z8Bn3R_4GXQG6AaVuTTvI_2o_of0DsQm7Gg</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Dsouza, Royson</creator><creator>Antunes, Paulo</creator><creator>Kakkonen, Markus</creator><creator>Tanhuanpää, Olli</creator><creator>Laurikainen, Pekka</creator><creator>Javanshour, Farzin</creator><creator>Kallio, Pasi</creator><creator>Kanerva, Mikko</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210416</creationdate><title>Microscale sensor solution for data collection from fibre-matrix interfaces</title><author>Dsouza, Royson ; Antunes, Paulo ; Kakkonen, Markus ; Tanhuanpää, Olli ; Laurikainen, Pekka ; Javanshour, Farzin ; Kallio, Pasi ; Kanerva, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/988</topic><topic>639/301/930</topic><topic>639/624/1020</topic><topic>Accuracy</topic><topic>Data collection</topic><topic>Dental restorative materials</topic><topic>Filaments</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>multidisciplinary</topic><topic>Polymers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Strain gauges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dsouza, Royson</creatorcontrib><creatorcontrib>Antunes, Paulo</creatorcontrib><creatorcontrib>Kakkonen, Markus</creatorcontrib><creatorcontrib>Tanhuanpää, Olli</creatorcontrib><creatorcontrib>Laurikainen, Pekka</creatorcontrib><creatorcontrib>Javanshour, Farzin</creatorcontrib><creatorcontrib>Kallio, Pasi</creatorcontrib><creatorcontrib>Kanerva, Mikko</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dsouza, Royson</au><au>Antunes, Paulo</au><au>Kakkonen, Markus</au><au>Tanhuanpää, Olli</au><au>Laurikainen, Pekka</au><au>Javanshour, Farzin</au><au>Kallio, Pasi</au><au>Kanerva, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscale sensor solution for data collection from fibre-matrix interfaces</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>8346</spage><epage>8346</epage><pages>8346-8346</pages><artnum>8346</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Especially the applications of fibrous composites in miniature products, dental and other medical applications require accurate data of microscale mechanics. The characterization of adhesion between single filament and picoliter-scale polymer matrix usually relies on the experiments using so-called microbond (MB) testing. The traditional MB test systems provide unitary data output (i.e., converted force) which is enigmatic in resolving the fracture parameters of multi-mode interface cracks. As a fundamental basis, the momentary reaction force and respective local strain at the location of a non-ambiguous gradient are needed for a mechanical analysis. In this paper, a monolithic compliant based structure with an integrated Fiber Bragg Grating (FBG) sensor is developed and analysed. The stiffness of the compliant structure is estimated by using mathematical and finite element (FE) models. Qualification experiments are carried out to confirm the functional performance: MB testing of synthetic (carbon and glass) and natural (flax) single filaments are successfully performed. Quasi-static and dynamic analysis of the MB testing is carried out by using the FE method to interpret the response of the compliant structure. The developed strain-sensing CBPM-FBG holder shows excellent sensitivity during the MB tests for both synthetic and natural filaments, even at a low filament diameters as low as
7
μ
m
, making the monolithic compliant structure the first instrument capable of force-strain data output for bonded filament-droplet specimens.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33863949</pmid><doi>10.1038/s41598-021-87723-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-04, Vol.11 (1), p.8346-8346, Article 8346 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_20a2f907115e4e809ce7aa1bdd663a40 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/988 639/301/930 639/624/1020 Accuracy Data collection Dental restorative materials Filaments Fourier transforms Humanities and Social Sciences Interfaces Lasers Mathematical models Medical research multidisciplinary Polymers Science Science (multidisciplinary) Sensors Strain gauges |
title | Microscale sensor solution for data collection from fibre-matrix interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscale%20sensor%20solution%20for%20data%20collection%20from%20fibre-matrix%20interfaces&rft.jtitle=Scientific%20reports&rft.au=Dsouza,%20Royson&rft.date=2021-04-16&rft.volume=11&rft.issue=1&rft.spage=8346&rft.epage=8346&rft.pages=8346-8346&rft.artnum=8346&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-87723-9&rft_dat=%3Cproquest_doaj_%3E2514606469%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-b49bcd453ed3a4dc0fbf502f89dbd1f6cb98b513afc3c64ea66119750c8dfbf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2513412571&rft_id=info:pmid/33863949&rfr_iscdi=true |