Loading…
Day-Ahead P2P Energy Sharing Strategy Among Energy Hubs Considering Flexibility of Energy Storage and Loads
Multi-energy systems are one of the key technologies to tackle energy crisis and environmental pollution. An energy hub (EH) is a minimum multi-energy system. Interconnection of multiple EHs through energy routers (ERs) can realize mutual energy assistance. This paper proposes a peer-to-peer (P2P) e...
Saved in:
Published in: | CSEE Journal of Power and Energy Systems 2024-01, Vol.10 (3), p.1105-1118 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-energy systems are one of the key technologies to tackle energy crisis and environmental pollution. An energy hub (EH) is a minimum multi-energy system. Interconnection of multiple EHs through energy routers (ERs) can realize mutual energy assistance. This paper proposes a peer-to-peer (P2P) energy sharing strategy between EHs including ERs in an interconnected system, which is divided into two levels. In the lower level, a method of determining the charging/discharging constraints of energy storage devices is proposed. Based on the Lyapunov optimization method, virtual queues are used to model the energy storage devices and flexible loads in the system. The objective is to minimize the overall operating cost of the interconnected system. In the upper level, a non-cooperative game model is introduced to minimize the cost of purchasing power from other EHs for each EH. A best response-based method is adapted to find the Nash equilibrium. The simulation outcomes demonstrate that application of the proposed strategy can reduce operating costs of an interconnected system and each EH. On basis of a real-world dataset of interconnected EHs, both analytical and numerical results show the effectiveness of the proposed strategy. |
---|---|
ISSN: | 2096-0042 2096-0042 |
DOI: | 10.17775/CSEEJPES.2021.06510 |