Loading…
Ultra-broadband metamaterial absorbers from long to very long infrared regime
Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm....
Saved in:
Published in: | Light, science & applications science & applications, 2021-07, Vol.10 (1), p.138-138, Article 138 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93 |
container_end_page | 138 |
container_issue | 1 |
container_start_page | 138 |
container_title | Light, science & applications |
container_volume | 10 |
creator | Zhou, Yu Qin, Zheng Liang, Zhongzhu Meng, Dejia Xu, Haiyang Smith, David R. Liu, Yichun |
description | Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si
3
N
4
/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si
3
N
4
, the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO
2
/Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors. |
doi_str_mv | 10.1038/s41377-021-00577-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_20c54450fd5b47c195a8481d6c4f2c69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20c54450fd5b47c195a8481d6c4f2c69</doaj_id><sourcerecordid>2548388928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVqV_gAOKxIVLyvgrcS5IqAJaqYgLPVv-GC9ZJXEZZyv139e7KaXlgC-e8bx5M36vqt4yOGMg9Mcsmei6BjhrAFSJ9IvqmIPsmk4J_fJJfFSd5ryFcnrJQHevqyMhOW-l7o-r79fjQrZxlGxwdg71hIud7II02LG2LidySLmOlKZ6TPOmXlJ9i3S3JsMcyRKGmnAzTPimehXtmPH04T6prr9--Xl-0Vz9-HZ5_vmq8UrC0gjArmdOYM89RhU8B826joNotYseogUfZVk9KKY4k33PwGMboXVcutCLk-py5Q3Jbs0NDZOlO5PsYA4PiTbG0jL4EQ2HMlMqiEE52XnWK6ulZqH1MnLf7rk-rVw3Ozdh8DgXQcZnpM8r8_DLbNKt0bzIzlgh-PBAQOn3DvNipiF7HEc7Y9plw1VRmgnFVYG-_we6TTuai1QHlNC657qg-IrylHImjI_LMDB7881qvinmm4P5Zt_07uk3Hlv-WF0AYgXkUpo3SH9n_4f2HtJFuYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548388928</pqid></control><display><type>article</type><title>Ultra-broadband metamaterial absorbers from long to very long infrared regime</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhou, Yu ; Qin, Zheng ; Liang, Zhongzhu ; Meng, Dejia ; Xu, Haiyang ; Smith, David R. ; Liu, Yichun</creator><creatorcontrib>Zhou, Yu ; Qin, Zheng ; Liang, Zhongzhu ; Meng, Dejia ; Xu, Haiyang ; Smith, David R. ; Liu, Yichun</creatorcontrib><description>Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si
3
N
4
/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si
3
N
4
, the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO
2
/Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-021-00577-8</identifier><identifier>PMID: 34226489</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/624 ; 639/624/399/1015 ; Applied and Technical Physics ; Atomic ; Bandwidths ; Classical and Continuum Physics ; Composite materials ; Experiments ; Lasers ; Light ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Silicon dioxide ; Silicon nitride</subject><ispartof>Light, science & applications, 2021-07, Vol.10 (1), p.138-138, Article 138</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</citedby><cites>FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</cites><orcidid>0000-0002-5389-8198 ; 0000-0002-1503-9114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548388928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548388928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34226489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Qin, Zheng</creatorcontrib><creatorcontrib>Liang, Zhongzhu</creatorcontrib><creatorcontrib>Meng, Dejia</creatorcontrib><creatorcontrib>Xu, Haiyang</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Liu, Yichun</creatorcontrib><title>Ultra-broadband metamaterial absorbers from long to very long infrared regime</title><title>Light, science & applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si
3
N
4
/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si
3
N
4
, the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO
2
/Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.</description><subject>142/126</subject><subject>639/624</subject><subject>639/624/399/1015</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Bandwidths</subject><subject>Classical and Continuum Physics</subject><subject>Composite materials</subject><subject>Experiments</subject><subject>Lasers</subject><subject>Light</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1DAQjRCIVqV_gAOKxIVLyvgrcS5IqAJaqYgLPVv-GC9ZJXEZZyv139e7KaXlgC-e8bx5M36vqt4yOGMg9Mcsmei6BjhrAFSJ9IvqmIPsmk4J_fJJfFSd5ryFcnrJQHevqyMhOW-l7o-r79fjQrZxlGxwdg71hIud7II02LG2LidySLmOlKZ6TPOmXlJ9i3S3JsMcyRKGmnAzTPimehXtmPH04T6prr9--Xl-0Vz9-HZ5_vmq8UrC0gjArmdOYM89RhU8B826joNotYseogUfZVk9KKY4k33PwGMboXVcutCLk-py5Q3Jbs0NDZOlO5PsYA4PiTbG0jL4EQ2HMlMqiEE52XnWK6ulZqH1MnLf7rk-rVw3Ozdh8DgXQcZnpM8r8_DLbNKt0bzIzlgh-PBAQOn3DvNipiF7HEc7Y9plw1VRmgnFVYG-_we6TTuai1QHlNC657qg-IrylHImjI_LMDB7881qvinmm4P5Zt_07uk3Hlv-WF0AYgXkUpo3SH9n_4f2HtJFuYA</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Zhou, Yu</creator><creator>Qin, Zheng</creator><creator>Liang, Zhongzhu</creator><creator>Meng, Dejia</creator><creator>Xu, Haiyang</creator><creator>Smith, David R.</creator><creator>Liu, Yichun</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5389-8198</orcidid><orcidid>https://orcid.org/0000-0002-1503-9114</orcidid></search><sort><creationdate>20210705</creationdate><title>Ultra-broadband metamaterial absorbers from long to very long infrared regime</title><author>Zhou, Yu ; Qin, Zheng ; Liang, Zhongzhu ; Meng, Dejia ; Xu, Haiyang ; Smith, David R. ; Liu, Yichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>142/126</topic><topic>639/624</topic><topic>639/624/399/1015</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Bandwidths</topic><topic>Classical and Continuum Physics</topic><topic>Composite materials</topic><topic>Experiments</topic><topic>Lasers</topic><topic>Light</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Qin, Zheng</creatorcontrib><creatorcontrib>Liang, Zhongzhu</creatorcontrib><creatorcontrib>Meng, Dejia</creatorcontrib><creatorcontrib>Xu, Haiyang</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Liu, Yichun</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Light, science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yu</au><au>Qin, Zheng</au><au>Liang, Zhongzhu</au><au>Meng, Dejia</au><au>Xu, Haiyang</au><au>Smith, David R.</au><au>Liu, Yichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband metamaterial absorbers from long to very long infrared regime</atitle><jtitle>Light, science & applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2021-07-05</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>138</spage><epage>138</epage><pages>138-138</pages><artnum>138</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si
3
N
4
/Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si
3
N
4
, the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO
2
/Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34226489</pmid><doi>10.1038/s41377-021-00577-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5389-8198</orcidid><orcidid>https://orcid.org/0000-0002-1503-9114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-7538 |
ispartof | Light, science & applications, 2021-07, Vol.10 (1), p.138-138, Article 138 |
issn | 2047-7538 2095-5545 2047-7538 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_20c54450fd5b47c195a8481d6c4f2c69 |
source | Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 142/126 639/624 639/624/399/1015 Applied and Technical Physics Atomic Bandwidths Classical and Continuum Physics Composite materials Experiments Lasers Light Molecular Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Silicon dioxide Silicon nitride |
title | Ultra-broadband metamaterial absorbers from long to very long infrared regime |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20metamaterial%20absorbers%20from%20long%20to%20very%20long%20infrared%20regime&rft.jtitle=Light,%20science%20&%20applications&rft.au=Zhou,%20Yu&rft.date=2021-07-05&rft.volume=10&rft.issue=1&rft.spage=138&rft.epage=138&rft.pages=138-138&rft.artnum=138&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-021-00577-8&rft_dat=%3Cproquest_doaj_%3E2548388928%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548388928&rft_id=info:pmid/34226489&rfr_iscdi=true |