Loading…

Ultra-broadband metamaterial absorbers from long to very long infrared regime

Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm....

Full description

Saved in:
Bibliographic Details
Published in:Light, science & applications science & applications, 2021-07, Vol.10 (1), p.138-138, Article 138
Main Authors: Zhou, Yu, Qin, Zheng, Liang, Zhongzhu, Meng, Dejia, Xu, Haiyang, Smith, David R., Liu, Yichun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93
cites cdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93
container_end_page 138
container_issue 1
container_start_page 138
container_title Light, science & applications
container_volume 10
creator Zhou, Yu
Qin, Zheng
Liang, Zhongzhu
Meng, Dejia
Xu, Haiyang
Smith, David R.
Liu, Yichun
description Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si 3 N 4 /Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si 3 N 4 , the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO 2 /Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors. Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.
doi_str_mv 10.1038/s41377-021-00577-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_20c54450fd5b47c195a8481d6c4f2c69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20c54450fd5b47c195a8481d6c4f2c69</doaj_id><sourcerecordid>2548388928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIVqV_gAOKxIVLyvgrcS5IqAJaqYgLPVv-GC9ZJXEZZyv139e7KaXlgC-e8bx5M36vqt4yOGMg9Mcsmei6BjhrAFSJ9IvqmIPsmk4J_fJJfFSd5ryFcnrJQHevqyMhOW-l7o-r79fjQrZxlGxwdg71hIud7II02LG2LidySLmOlKZ6TPOmXlJ9i3S3JsMcyRKGmnAzTPimehXtmPH04T6prr9--Xl-0Vz9-HZ5_vmq8UrC0gjArmdOYM89RhU8B826joNotYseogUfZVk9KKY4k33PwGMboXVcutCLk-py5Q3Jbs0NDZOlO5PsYA4PiTbG0jL4EQ2HMlMqiEE52XnWK6ulZqH1MnLf7rk-rVw3Ozdh8DgXQcZnpM8r8_DLbNKt0bzIzlgh-PBAQOn3DvNipiF7HEc7Y9plw1VRmgnFVYG-_we6TTuai1QHlNC657qg-IrylHImjI_LMDB7881qvinmm4P5Zt_07uk3Hlv-WF0AYgXkUpo3SH9n_4f2HtJFuYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548388928</pqid></control><display><type>article</type><title>Ultra-broadband metamaterial absorbers from long to very long infrared regime</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhou, Yu ; Qin, Zheng ; Liang, Zhongzhu ; Meng, Dejia ; Xu, Haiyang ; Smith, David R. ; Liu, Yichun</creator><creatorcontrib>Zhou, Yu ; Qin, Zheng ; Liang, Zhongzhu ; Meng, Dejia ; Xu, Haiyang ; Smith, David R. ; Liu, Yichun</creatorcontrib><description>Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si 3 N 4 /Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si 3 N 4 , the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO 2 /Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors. Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-021-00577-8</identifier><identifier>PMID: 34226489</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/624 ; 639/624/399/1015 ; Applied and Technical Physics ; Atomic ; Bandwidths ; Classical and Continuum Physics ; Composite materials ; Experiments ; Lasers ; Light ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Silicon dioxide ; Silicon nitride</subject><ispartof>Light, science &amp; applications, 2021-07, Vol.10 (1), p.138-138, Article 138</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</citedby><cites>FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</cites><orcidid>0000-0002-5389-8198 ; 0000-0002-1503-9114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548388928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548388928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34226489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Qin, Zheng</creatorcontrib><creatorcontrib>Liang, Zhongzhu</creatorcontrib><creatorcontrib>Meng, Dejia</creatorcontrib><creatorcontrib>Xu, Haiyang</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Liu, Yichun</creatorcontrib><title>Ultra-broadband metamaterial absorbers from long to very long infrared regime</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si 3 N 4 /Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si 3 N 4 , the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO 2 /Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors. Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.</description><subject>142/126</subject><subject>639/624</subject><subject>639/624/399/1015</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Bandwidths</subject><subject>Classical and Continuum Physics</subject><subject>Composite materials</subject><subject>Experiments</subject><subject>Lasers</subject><subject>Light</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1DAQjRCIVqV_gAOKxIVLyvgrcS5IqAJaqYgLPVv-GC9ZJXEZZyv139e7KaXlgC-e8bx5M36vqt4yOGMg9Mcsmei6BjhrAFSJ9IvqmIPsmk4J_fJJfFSd5ryFcnrJQHevqyMhOW-l7o-r79fjQrZxlGxwdg71hIud7II02LG2LidySLmOlKZ6TPOmXlJ9i3S3JsMcyRKGmnAzTPimehXtmPH04T6prr9--Xl-0Vz9-HZ5_vmq8UrC0gjArmdOYM89RhU8B826joNotYseogUfZVk9KKY4k33PwGMboXVcutCLk-py5Q3Jbs0NDZOlO5PsYA4PiTbG0jL4EQ2HMlMqiEE52XnWK6ulZqH1MnLf7rk-rVw3Ozdh8DgXQcZnpM8r8_DLbNKt0bzIzlgh-PBAQOn3DvNipiF7HEc7Y9plw1VRmgnFVYG-_we6TTuai1QHlNC657qg-IrylHImjI_LMDB7881qvinmm4P5Zt_07uk3Hlv-WF0AYgXkUpo3SH9n_4f2HtJFuYA</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Zhou, Yu</creator><creator>Qin, Zheng</creator><creator>Liang, Zhongzhu</creator><creator>Meng, Dejia</creator><creator>Xu, Haiyang</creator><creator>Smith, David R.</creator><creator>Liu, Yichun</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5389-8198</orcidid><orcidid>https://orcid.org/0000-0002-1503-9114</orcidid></search><sort><creationdate>20210705</creationdate><title>Ultra-broadband metamaterial absorbers from long to very long infrared regime</title><author>Zhou, Yu ; Qin, Zheng ; Liang, Zhongzhu ; Meng, Dejia ; Xu, Haiyang ; Smith, David R. ; Liu, Yichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>142/126</topic><topic>639/624</topic><topic>639/624/399/1015</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Bandwidths</topic><topic>Classical and Continuum Physics</topic><topic>Composite materials</topic><topic>Experiments</topic><topic>Lasers</topic><topic>Light</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Qin, Zheng</creatorcontrib><creatorcontrib>Liang, Zhongzhu</creatorcontrib><creatorcontrib>Meng, Dejia</creatorcontrib><creatorcontrib>Xu, Haiyang</creatorcontrib><creatorcontrib>Smith, David R.</creatorcontrib><creatorcontrib>Liu, Yichun</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yu</au><au>Qin, Zheng</au><au>Liang, Zhongzhu</au><au>Meng, Dejia</au><au>Xu, Haiyang</au><au>Smith, David R.</au><au>Liu, Yichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-broadband metamaterial absorbers from long to very long infrared regime</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2021-07-05</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>138</spage><epage>138</epage><pages>138-138</pages><artnum>138</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>Broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/Si 3 N 4 /Ti configuration. By taking advantage of coupling surface plasmon resonances and intrinsic absorption of lossy material Si 3 N 4 , the average absorptions of two types of absorbers achieve almost 95% from 8 to 14 μm (experiment result: 78% from 6.5 to 13.5 μm). In order to expand the absorption bandwidth, we further propose two Ti/Si/SiO 2 /Ti absorbers which can absorb 92% and 87% of ultra-broadband light in the 14–30 μm and 8–30 μm spectral range, respectively. Our findings establish general and systematic strategies for guiding the design of metamaterial absorbers with excellent broadband absorption and pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors. Ultra-broadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are designed and demonstrated, which pave the way for enhancing the optical performance in applications of infrared thermal emitters, imaging and photodetectors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34226489</pmid><doi>10.1038/s41377-021-00577-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5389-8198</orcidid><orcidid>https://orcid.org/0000-0002-1503-9114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2021-07, Vol.10 (1), p.138-138, Article 138
issn 2047-7538
2095-5545
2047-7538
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_20c54450fd5b47c195a8481d6c4f2c69
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 142/126
639/624
639/624/399/1015
Applied and Technical Physics
Atomic
Bandwidths
Classical and Continuum Physics
Composite materials
Experiments
Lasers
Light
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Silicon dioxide
Silicon nitride
title Ultra-broadband metamaterial absorbers from long to very long infrared regime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-broadband%20metamaterial%20absorbers%20from%20long%20to%20very%20long%20infrared%20regime&rft.jtitle=Light,%20science%20&%20applications&rft.au=Zhou,%20Yu&rft.date=2021-07-05&rft.volume=10&rft.issue=1&rft.spage=138&rft.epage=138&rft.pages=138-138&rft.artnum=138&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-021-00577-8&rft_dat=%3Cproquest_doaj_%3E2548388928%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-30e791b3e92cef5dc20817720368bfc0fa0cf4538d5152149910ce6f06b24bd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548388928&rft_id=info:pmid/34226489&rfr_iscdi=true