Loading…

Far-from-equilibrium attractors for massive kinetic theory in the relaxation time approximation

A bstract We investigate whether early and late time attractors for non-conformal kinetic theories exist by computing the time-evolution of a large set of moments of the one-particle distribution function. For this purpose we make use of a previously obtained exact solution of the 0+1D boost-invaria...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2022-12, Vol.2022 (12), p.143-27, Article 143
Main Authors: Alalawi, H., Strickland, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract We investigate whether early and late time attractors for non-conformal kinetic theories exist by computing the time-evolution of a large set of moments of the one-particle distribution function. For this purpose we make use of a previously obtained exact solution of the 0+1D boost-invariant massive Boltzmann equation in relaxation time approximation. We extend prior attractor studies of non-conformal systems by using a realistic mass- and temperature-dependent relaxation time and explicitly computing the effect of varying both the initial momentum-space anisotropy and initialization time on the time evolution of a large set of integral moments. Our findings are consistent with prior studies, which found that there is an attractor for the scaled longitudinal pressure, but not for the shear and bulk viscous corrections separately. We further present evidence that both late- and early-time attractors exist for all moments of the one-particle distribution function that contain greater than one power of the longitudinal momentum squared.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2022)143