Loading…

Identification of community structure-based brain states and transitions using functional MRI

•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task deman...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2021-12, Vol.244, p.118635-118635, Article 118635
Main Authors: Bian, Lingbin, Cui, Tiangang, Thomas Yeo, B.T., Fornito, Alex, Razi, Adeel, Keith, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613
cites cdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613
container_end_page 118635
container_issue
container_start_page 118635
container_title NeuroImage (Orlando, Fla.)
container_volume 244
creator Bian, Lingbin
Cui, Tiangang
Thomas Yeo, B.T.
Fornito, Alex
Razi, Adeel
Keith, Jonathan
description •Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI. [Display omitted] Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.
doi_str_mv 10.1016/j.neuroimage.2021.118635
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2130e6d8857c457f9eb79fc905dbbb10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811921009083</els_id><doaj_id>oai_doaj_org_article_2130e6d8857c457f9eb79fc905dbbb10</doaj_id><sourcerecordid>2586430283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</originalsourceid><addsrcrecordid>eNqFkltvFSEUhSdGY2v1L5hJfPFljlwGZngx0cbLSWpMjD4awmVzZDIHKjBN-u9lOrVaX3wCNmt_wGI1TYvRDiPMX027AEuK_qgOsCOI4B3GI6fsQXOKkWCdYAN5uM4Z7UaMxUnzJOcJISRwPz5uTmjPSc8QPW2-7y2E4p03qvgY2uhaE4_HJfhy3eaSFlOWBJ1WGWyrk_KhVlWB3Kpg25JUyH5tzO2SfTi0bglmXau5_fRl_7R55NSc4dnteNZ8e__u6_nH7uLzh_35m4vOsIGWDvfUiV4RhgaruIDeacYoUg5z4tSIhKU90oT3lPcWK02YcYQT7KhGfOCYnjX7jWujmuRlqsakaxmVlzeFmA5SpeLNDJJgioDbcWSD6dngBOhBOCMQs1prjCrr9ca6XPQRrKn2JDXfg97fCf6HPMQrOVYGRSvg5S0gxZ8L5CKPPhuYZxUgLlkSNiIuBOe8Sl_8I53ikqp5N6r6XkRGWlXjpjIp5pzA3V0GI7nmQU7yTx7kmge55aG2Pv_7MXeNvwNQBW83AdTvufKQZDYeggHrE5hS_fP_P-UXVaXMoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586430283</pqid></control><display><type>article</type><title>Identification of community structure-based brain states and transitions using functional MRI</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bian, Lingbin ; Cui, Tiangang ; Thomas Yeo, B.T. ; Fornito, Alex ; Razi, Adeel ; Keith, Jonathan</creator><creatorcontrib>Bian, Lingbin ; Cui, Tiangang ; Thomas Yeo, B.T. ; Fornito, Alex ; Razi, Adeel ; Keith, Jonathan</creatorcontrib><description>•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI. [Display omitted] Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2021.118635</identifier><identifier>PMID: 34624503</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Brain - diagnostic imaging ; Brain mapping ; Change-point detection ; Cognition ; Community structure ; Computer Simulation ; Connectome ; Dynamic functional connectivity ; Experiments ; Functional magnetic resonance imaging ; Histological Techniques ; Humans ; Latent block model ; Magnetic Resonance Imaging - methods ; Markov analysis ; Markov chain Monte Carlo ; Memory ; Mental task performance ; Methods ; Neural networks ; Oxygen Saturation ; Parameter estimation ; Short term memory ; Time Factors ; Time series</subject><ispartof>NeuroImage (Orlando, Fla.), 2021-12, Vol.244, p.118635-118635, Article 118635</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 1, 2021</rights><rights>2021 The Authors. Published by Elsevier Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</citedby><cites>FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34624503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Lingbin</creatorcontrib><creatorcontrib>Cui, Tiangang</creatorcontrib><creatorcontrib>Thomas Yeo, B.T.</creatorcontrib><creatorcontrib>Fornito, Alex</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Keith, Jonathan</creatorcontrib><title>Identification of community structure-based brain states and transitions using functional MRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI. [Display omitted] Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>Change-point detection</subject><subject>Cognition</subject><subject>Community structure</subject><subject>Computer Simulation</subject><subject>Connectome</subject><subject>Dynamic functional connectivity</subject><subject>Experiments</subject><subject>Functional magnetic resonance imaging</subject><subject>Histological Techniques</subject><subject>Humans</subject><subject>Latent block model</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Markov analysis</subject><subject>Markov chain Monte Carlo</subject><subject>Memory</subject><subject>Mental task performance</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Oxygen Saturation</subject><subject>Parameter estimation</subject><subject>Short term memory</subject><subject>Time Factors</subject><subject>Time series</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkltvFSEUhSdGY2v1L5hJfPFljlwGZngx0cbLSWpMjD4awmVzZDIHKjBN-u9lOrVaX3wCNmt_wGI1TYvRDiPMX027AEuK_qgOsCOI4B3GI6fsQXOKkWCdYAN5uM4Z7UaMxUnzJOcJISRwPz5uTmjPSc8QPW2-7y2E4p03qvgY2uhaE4_HJfhy3eaSFlOWBJ1WGWyrk_KhVlWB3Kpg25JUyH5tzO2SfTi0bglmXau5_fRl_7R55NSc4dnteNZ8e__u6_nH7uLzh_35m4vOsIGWDvfUiV4RhgaruIDeacYoUg5z4tSIhKU90oT3lPcWK02YcYQT7KhGfOCYnjX7jWujmuRlqsakaxmVlzeFmA5SpeLNDJJgioDbcWSD6dngBOhBOCMQs1prjCrr9ca6XPQRrKn2JDXfg97fCf6HPMQrOVYGRSvg5S0gxZ8L5CKPPhuYZxUgLlkSNiIuBOe8Sl_8I53ikqp5N6r6XkRGWlXjpjIp5pzA3V0GI7nmQU7yTx7kmge55aG2Pv_7MXeNvwNQBW83AdTvufKQZDYeggHrE5hS_fP_P-UXVaXMoA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bian, Lingbin</creator><creator>Cui, Tiangang</creator><creator>Thomas Yeo, B.T.</creator><creator>Fornito, Alex</creator><creator>Razi, Adeel</creator><creator>Keith, Jonathan</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Academic Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>Identification of community structure-based brain states and transitions using functional MRI</title><author>Bian, Lingbin ; Cui, Tiangang ; Thomas Yeo, B.T. ; Fornito, Alex ; Razi, Adeel ; Keith, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>Change-point detection</topic><topic>Cognition</topic><topic>Community structure</topic><topic>Computer Simulation</topic><topic>Connectome</topic><topic>Dynamic functional connectivity</topic><topic>Experiments</topic><topic>Functional magnetic resonance imaging</topic><topic>Histological Techniques</topic><topic>Humans</topic><topic>Latent block model</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Markov analysis</topic><topic>Markov chain Monte Carlo</topic><topic>Memory</topic><topic>Mental task performance</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Oxygen Saturation</topic><topic>Parameter estimation</topic><topic>Short term memory</topic><topic>Time Factors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Lingbin</creatorcontrib><creatorcontrib>Cui, Tiangang</creatorcontrib><creatorcontrib>Thomas Yeo, B.T.</creatorcontrib><creatorcontrib>Fornito, Alex</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Keith, Jonathan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Lingbin</au><au>Cui, Tiangang</au><au>Thomas Yeo, B.T.</au><au>Fornito, Alex</au><au>Razi, Adeel</au><au>Keith, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of community structure-based brain states and transitions using functional MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>244</volume><spage>118635</spage><epage>118635</epage><pages>118635-118635</pages><artnum>118635</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI. [Display omitted] Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34624503</pmid><doi>10.1016/j.neuroimage.2021.118635</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2021-12, Vol.244, p.118635-118635, Article 118635
issn 1053-8119
1095-9572
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2130e6d8857c457f9eb79fc905dbbb10
source ScienceDirect Freedom Collection 2022-2024
subjects Bayes Theorem
Bayesian analysis
Bayesian inference
Brain - diagnostic imaging
Brain mapping
Change-point detection
Cognition
Community structure
Computer Simulation
Connectome
Dynamic functional connectivity
Experiments
Functional magnetic resonance imaging
Histological Techniques
Humans
Latent block model
Magnetic Resonance Imaging - methods
Markov analysis
Markov chain Monte Carlo
Memory
Mental task performance
Methods
Neural networks
Oxygen Saturation
Parameter estimation
Short term memory
Time Factors
Time series
title Identification of community structure-based brain states and transitions using functional MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20community%20structure-based%20brain%20states%20and%20transitions%20using%20functional%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Bian,%20Lingbin&rft.date=2021-12-01&rft.volume=244&rft.spage=118635&rft.epage=118635&rft.pages=118635-118635&rft.artnum=118635&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2021.118635&rft_dat=%3Cproquest_doaj_%3E2586430283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586430283&rft_id=info:pmid/34624503&rfr_iscdi=true