Loading…
Identification of community structure-based brain states and transitions using functional MRI
•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task deman...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2021-12, Vol.244, p.118635-118635, Article 118635 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613 |
container_end_page | 118635 |
container_issue | |
container_start_page | 118635 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 244 |
creator | Bian, Lingbin Cui, Tiangang Thomas Yeo, B.T. Fornito, Alex Razi, Adeel Keith, Jonathan |
description | •Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI.
[Display omitted]
Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions. |
doi_str_mv | 10.1016/j.neuroimage.2021.118635 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2130e6d8857c457f9eb79fc905dbbb10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811921009083</els_id><doaj_id>oai_doaj_org_article_2130e6d8857c457f9eb79fc905dbbb10</doaj_id><sourcerecordid>2586430283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</originalsourceid><addsrcrecordid>eNqFkltvFSEUhSdGY2v1L5hJfPFljlwGZngx0cbLSWpMjD4awmVzZDIHKjBN-u9lOrVaX3wCNmt_wGI1TYvRDiPMX027AEuK_qgOsCOI4B3GI6fsQXOKkWCdYAN5uM4Z7UaMxUnzJOcJISRwPz5uTmjPSc8QPW2-7y2E4p03qvgY2uhaE4_HJfhy3eaSFlOWBJ1WGWyrk_KhVlWB3Kpg25JUyH5tzO2SfTi0bglmXau5_fRl_7R55NSc4dnteNZ8e__u6_nH7uLzh_35m4vOsIGWDvfUiV4RhgaruIDeacYoUg5z4tSIhKU90oT3lPcWK02YcYQT7KhGfOCYnjX7jWujmuRlqsakaxmVlzeFmA5SpeLNDJJgioDbcWSD6dngBOhBOCMQs1prjCrr9ca6XPQRrKn2JDXfg97fCf6HPMQrOVYGRSvg5S0gxZ8L5CKPPhuYZxUgLlkSNiIuBOe8Sl_8I53ikqp5N6r6XkRGWlXjpjIp5pzA3V0GI7nmQU7yTx7kmge55aG2Pv_7MXeNvwNQBW83AdTvufKQZDYeggHrE5hS_fP_P-UXVaXMoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586430283</pqid></control><display><type>article</type><title>Identification of community structure-based brain states and transitions using functional MRI</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bian, Lingbin ; Cui, Tiangang ; Thomas Yeo, B.T. ; Fornito, Alex ; Razi, Adeel ; Keith, Jonathan</creator><creatorcontrib>Bian, Lingbin ; Cui, Tiangang ; Thomas Yeo, B.T. ; Fornito, Alex ; Razi, Adeel ; Keith, Jonathan</creatorcontrib><description>•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI.
[Display omitted]
Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2021.118635</identifier><identifier>PMID: 34624503</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Brain - diagnostic imaging ; Brain mapping ; Change-point detection ; Cognition ; Community structure ; Computer Simulation ; Connectome ; Dynamic functional connectivity ; Experiments ; Functional magnetic resonance imaging ; Histological Techniques ; Humans ; Latent block model ; Magnetic Resonance Imaging - methods ; Markov analysis ; Markov chain Monte Carlo ; Memory ; Mental task performance ; Methods ; Neural networks ; Oxygen Saturation ; Parameter estimation ; Short term memory ; Time Factors ; Time series</subject><ispartof>NeuroImage (Orlando, Fla.), 2021-12, Vol.244, p.118635-118635, Article 118635</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Dec 1, 2021</rights><rights>2021 The Authors. Published by Elsevier Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</citedby><cites>FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34624503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Lingbin</creatorcontrib><creatorcontrib>Cui, Tiangang</creatorcontrib><creatorcontrib>Thomas Yeo, B.T.</creatorcontrib><creatorcontrib>Fornito, Alex</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Keith, Jonathan</creatorcontrib><title>Identification of community structure-based brain states and transitions using functional MRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI.
[Display omitted]
Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>Change-point detection</subject><subject>Cognition</subject><subject>Community structure</subject><subject>Computer Simulation</subject><subject>Connectome</subject><subject>Dynamic functional connectivity</subject><subject>Experiments</subject><subject>Functional magnetic resonance imaging</subject><subject>Histological Techniques</subject><subject>Humans</subject><subject>Latent block model</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Markov analysis</subject><subject>Markov chain Monte Carlo</subject><subject>Memory</subject><subject>Mental task performance</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Oxygen Saturation</subject><subject>Parameter estimation</subject><subject>Short term memory</subject><subject>Time Factors</subject><subject>Time series</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkltvFSEUhSdGY2v1L5hJfPFljlwGZngx0cbLSWpMjD4awmVzZDIHKjBN-u9lOrVaX3wCNmt_wGI1TYvRDiPMX027AEuK_qgOsCOI4B3GI6fsQXOKkWCdYAN5uM4Z7UaMxUnzJOcJISRwPz5uTmjPSc8QPW2-7y2E4p03qvgY2uhaE4_HJfhy3eaSFlOWBJ1WGWyrk_KhVlWB3Kpg25JUyH5tzO2SfTi0bglmXau5_fRl_7R55NSc4dnteNZ8e__u6_nH7uLzh_35m4vOsIGWDvfUiV4RhgaruIDeacYoUg5z4tSIhKU90oT3lPcWK02YcYQT7KhGfOCYnjX7jWujmuRlqsakaxmVlzeFmA5SpeLNDJJgioDbcWSD6dngBOhBOCMQs1prjCrr9ca6XPQRrKn2JDXfg97fCf6HPMQrOVYGRSvg5S0gxZ8L5CKPPhuYZxUgLlkSNiIuBOe8Sl_8I53ikqp5N6r6XkRGWlXjpjIp5pzA3V0GI7nmQU7yTx7kmge55aG2Pv_7MXeNvwNQBW83AdTvufKQZDYeggHrE5hS_fP_P-UXVaXMoA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bian, Lingbin</creator><creator>Cui, Tiangang</creator><creator>Thomas Yeo, B.T.</creator><creator>Fornito, Alex</creator><creator>Razi, Adeel</creator><creator>Keith, Jonathan</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Academic Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>Identification of community structure-based brain states and transitions using functional MRI</title><author>Bian, Lingbin ; Cui, Tiangang ; Thomas Yeo, B.T. ; Fornito, Alex ; Razi, Adeel ; Keith, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>Change-point detection</topic><topic>Cognition</topic><topic>Community structure</topic><topic>Computer Simulation</topic><topic>Connectome</topic><topic>Dynamic functional connectivity</topic><topic>Experiments</topic><topic>Functional magnetic resonance imaging</topic><topic>Histological Techniques</topic><topic>Humans</topic><topic>Latent block model</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Markov analysis</topic><topic>Markov chain Monte Carlo</topic><topic>Memory</topic><topic>Mental task performance</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Oxygen Saturation</topic><topic>Parameter estimation</topic><topic>Short term memory</topic><topic>Time Factors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Lingbin</creatorcontrib><creatorcontrib>Cui, Tiangang</creatorcontrib><creatorcontrib>Thomas Yeo, B.T.</creatorcontrib><creatorcontrib>Fornito, Alex</creatorcontrib><creatorcontrib>Razi, Adeel</creatorcontrib><creatorcontrib>Keith, Jonathan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Lingbin</au><au>Cui, Tiangang</au><au>Thomas Yeo, B.T.</au><au>Fornito, Alex</au><au>Razi, Adeel</au><au>Keith, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of community structure-based brain states and transitions using functional MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>244</volume><spage>118635</spage><epage>118635</epage><pages>118635-118635</pages><artnum>118635</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>•Community-based detection of discrete brain states using stochastic latent block model.•Bayesian change-point detection and model selection via posterior predictive discrepancy.•Markov chain Monte Carlo methods for estimation of community memberships.•Distinctive brain states for varying task demands in working memory task fMRI.
[Display omitted]
Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct networks. Characterizing the way in which brain regions reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian method for characterizing community structure-based latent brain states and showcase a novel strategy based on posterior predictive discrepancy using the latent block model to detect transitions between community structures in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34624503</pmid><doi>10.1016/j.neuroimage.2021.118635</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2021-12, Vol.244, p.118635-118635, Article 118635 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2130e6d8857c457f9eb79fc905dbbb10 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bayes Theorem Bayesian analysis Bayesian inference Brain - diagnostic imaging Brain mapping Change-point detection Cognition Community structure Computer Simulation Connectome Dynamic functional connectivity Experiments Functional magnetic resonance imaging Histological Techniques Humans Latent block model Magnetic Resonance Imaging - methods Markov analysis Markov chain Monte Carlo Memory Mental task performance Methods Neural networks Oxygen Saturation Parameter estimation Short term memory Time Factors Time series |
title | Identification of community structure-based brain states and transitions using functional MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20community%20structure-based%20brain%20states%20and%20transitions%20using%20functional%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Bian,%20Lingbin&rft.date=2021-12-01&rft.volume=244&rft.spage=118635&rft.epage=118635&rft.pages=118635-118635&rft.artnum=118635&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2021.118635&rft_dat=%3Cproquest_doaj_%3E2586430283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-143f94a2507da69e4fb5530af162fa809d340b264364d1ab25cf2621f3b067613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586430283&rft_id=info:pmid/34624503&rfr_iscdi=true |