Loading…

Path Planning Method for UUV Homing and Docking in Movement Disorders Environment

Path planning method for unmanned underwater vehicles (UUV) homing and docking in movement disorders environment is proposed in this paper. Firstly, cost function is proposed for path planning. Then, a novel particle swarm optimization (NPSO) is proposed and applied to find the waypoint with minimum...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-13
Main Authors: Chen, Tao, Chi, Dongnan, Deng, Chao, Yan, Zheping, Hou, Shuping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53
cites cdi_FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53
container_end_page 13
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Chen, Tao
Chi, Dongnan
Deng, Chao
Yan, Zheping
Hou, Shuping
description Path planning method for unmanned underwater vehicles (UUV) homing and docking in movement disorders environment is proposed in this paper. Firstly, cost function is proposed for path planning. Then, a novel particle swarm optimization (NPSO) is proposed and applied to find the waypoint with minimum value of cost function. Then, a strategy for UUV enters into the mother vessel with a fixed angle being proposed. Finally, the test function is introduced to analyze the performance of NPSO and compare with basic particle swarm optimization (BPSO), inertia weight particle swarm optimization (LWPSO, EPSO), and time-varying acceleration coefficient (TVAC). It has turned out that, for unimodal functions, NPSO performed better searching accuracy and stability than other algorithms, and, for multimodal functions, the performance of NPSO is similar to TVAC. Then, the simulation of UUV path planning is presented, and it showed that, with the strategy proposed in this paper, UUV can dodge obstacles and threats, and search for the efficiency path.
doi_str_mv 10.1155/2014/246469
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_213cd232a47944be93d665c900bd3521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413710775</galeid><doaj_id>oai_doaj_org_article_213cd232a47944be93d665c900bd3521</doaj_id><sourcerecordid>A413710775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53</originalsourceid><addsrcrecordid>eNqNks1rFDEYxoModl09eZcBL6JMm-9kLoXSVltosYIr3kImyexm3UlqMrul_70Zp5bWi5JDwvP-8pD3zQPAawT3EWLsAENEDzDllDdPwAwxImpB6fenYIYJ4zVHFO6BFzmvISRSIPYc7GEGGUW8mYEvV3pYVVcbHYIPy-rSDatoqy6marH4Vp3FflR1sNVJND_Gsw_VZdy53oWhOvE5JutSrk7DzqcYRvUleNbpTXav7vY5WHw8_Xp8Vl98_nR-fHRRGw7ZUGOpiWmdkNBIZBw2mLWoJRIRiKBpOuJEATCGVsPGUkuxFZhjw6WhmHeMzMH55GujXqvr5HudblXUXv0WYloqnQZvNk5hRIzFBGsqGkpb1xDLOTMNhK0lrFTn4HDyut62vbOmtJH05pHp40rwK7WMO0VhAykRxeDdnUGKP7cuD6r32bhNmauL26yQIFhijjj9N8qo5IQ3jSzo27_QddymUKZaKIZl-U7BC7U_UUtdevWhi-WJpizrem9icJ0v-hFFRCAoxDi5D9MFk2LOyXX3jSKoxkipMVJqilSh3zyczT37J0MFeD8BKx-svvH_5-YK4jr9AKZSSkZ-AZEH2hg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552838776</pqid></control><display><type>article</type><title>Path Planning Method for UUV Homing and Docking in Movement Disorders Environment</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chen, Tao ; Chi, Dongnan ; Deng, Chao ; Yan, Zheping ; Hou, Shuping</creator><contributor>Trunfio, Giuseppe A.</contributor><creatorcontrib>Chen, Tao ; Chi, Dongnan ; Deng, Chao ; Yan, Zheping ; Hou, Shuping ; Trunfio, Giuseppe A.</creatorcontrib><description>Path planning method for unmanned underwater vehicles (UUV) homing and docking in movement disorders environment is proposed in this paper. Firstly, cost function is proposed for path planning. Then, a novel particle swarm optimization (NPSO) is proposed and applied to find the waypoint with minimum value of cost function. Then, a strategy for UUV enters into the mother vessel with a fixed angle being proposed. Finally, the test function is introduced to analyze the performance of NPSO and compare with basic particle swarm optimization (BPSO), inertia weight particle swarm optimization (LWPSO, EPSO), and time-varying acceleration coefficient (TVAC). It has turned out that, for unimodal functions, NPSO performed better searching accuracy and stability than other algorithms, and, for multimodal functions, the performance of NPSO is similar to TVAC. Then, the simulation of UUV path planning is presented, and it showed that, with the strategy proposed in this paper, UUV can dodge obstacles and threats, and search for the efficiency path.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/246469</identifier><identifier>PMID: 25054169</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Colleges &amp; universities ; Computer Simulation ; Control ; Electronics in navigation ; Engineering research ; Hydrology ; Mathematical optimization ; Methods ; Models, Theoretical ; Motion ; Motion control ; Personal computers ; Remote submersibles ; Ships - methods ; Software packages ; Underwater vehicles</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-13</ispartof><rights>Copyright © 2014 Zheping Yan et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Zheping Yan et al. Zheping Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Zheping Yan et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53</citedby><cites>FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53</cites><orcidid>0000-0002-8702-339X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1552838776/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1552838776?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25054169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Trunfio, Giuseppe A.</contributor><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Chi, Dongnan</creatorcontrib><creatorcontrib>Deng, Chao</creatorcontrib><creatorcontrib>Yan, Zheping</creatorcontrib><creatorcontrib>Hou, Shuping</creatorcontrib><title>Path Planning Method for UUV Homing and Docking in Movement Disorders Environment</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Path planning method for unmanned underwater vehicles (UUV) homing and docking in movement disorders environment is proposed in this paper. Firstly, cost function is proposed for path planning. Then, a novel particle swarm optimization (NPSO) is proposed and applied to find the waypoint with minimum value of cost function. Then, a strategy for UUV enters into the mother vessel with a fixed angle being proposed. Finally, the test function is introduced to analyze the performance of NPSO and compare with basic particle swarm optimization (BPSO), inertia weight particle swarm optimization (LWPSO, EPSO), and time-varying acceleration coefficient (TVAC). It has turned out that, for unimodal functions, NPSO performed better searching accuracy and stability than other algorithms, and, for multimodal functions, the performance of NPSO is similar to TVAC. Then, the simulation of UUV path planning is presented, and it showed that, with the strategy proposed in this paper, UUV can dodge obstacles and threats, and search for the efficiency path.</description><subject>Colleges &amp; universities</subject><subject>Computer Simulation</subject><subject>Control</subject><subject>Electronics in navigation</subject><subject>Engineering research</subject><subject>Hydrology</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Motion</subject><subject>Motion control</subject><subject>Personal computers</subject><subject>Remote submersibles</subject><subject>Ships - methods</subject><subject>Software packages</subject><subject>Underwater vehicles</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEYxoModl09eZcBL6JMm-9kLoXSVltosYIr3kImyexm3UlqMrul_70Zp5bWi5JDwvP-8pD3zQPAawT3EWLsAENEDzDllDdPwAwxImpB6fenYIYJ4zVHFO6BFzmvISRSIPYc7GEGGUW8mYEvV3pYVVcbHYIPy-rSDatoqy6marH4Vp3FflR1sNVJND_Gsw_VZdy53oWhOvE5JutSrk7DzqcYRvUleNbpTXav7vY5WHw8_Xp8Vl98_nR-fHRRGw7ZUGOpiWmdkNBIZBw2mLWoJRIRiKBpOuJEATCGVsPGUkuxFZhjw6WhmHeMzMH55GujXqvr5HudblXUXv0WYloqnQZvNk5hRIzFBGsqGkpb1xDLOTMNhK0lrFTn4HDyut62vbOmtJH05pHp40rwK7WMO0VhAykRxeDdnUGKP7cuD6r32bhNmauL26yQIFhijjj9N8qo5IQ3jSzo27_QddymUKZaKIZl-U7BC7U_UUtdevWhi-WJpizrem9icJ0v-hFFRCAoxDi5D9MFk2LOyXX3jSKoxkipMVJqilSh3zyczT37J0MFeD8BKx-svvH_5-YK4jr9AKZSSkZ-AZEH2hg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Chen, Tao</creator><creator>Chi, Dongnan</creator><creator>Deng, Chao</creator><creator>Yan, Zheping</creator><creator>Hou, Shuping</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8702-339X</orcidid></search><sort><creationdate>20140101</creationdate><title>Path Planning Method for UUV Homing and Docking in Movement Disorders Environment</title><author>Chen, Tao ; Chi, Dongnan ; Deng, Chao ; Yan, Zheping ; Hou, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Colleges &amp; universities</topic><topic>Computer Simulation</topic><topic>Control</topic><topic>Electronics in navigation</topic><topic>Engineering research</topic><topic>Hydrology</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Motion</topic><topic>Motion control</topic><topic>Personal computers</topic><topic>Remote submersibles</topic><topic>Ships - methods</topic><topic>Software packages</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Chi, Dongnan</creatorcontrib><creatorcontrib>Deng, Chao</creatorcontrib><creatorcontrib>Yan, Zheping</creatorcontrib><creatorcontrib>Hou, Shuping</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tao</au><au>Chi, Dongnan</au><au>Deng, Chao</au><au>Yan, Zheping</au><au>Hou, Shuping</au><au>Trunfio, Giuseppe A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path Planning Method for UUV Homing and Docking in Movement Disorders Environment</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Path planning method for unmanned underwater vehicles (UUV) homing and docking in movement disorders environment is proposed in this paper. Firstly, cost function is proposed for path planning. Then, a novel particle swarm optimization (NPSO) is proposed and applied to find the waypoint with minimum value of cost function. Then, a strategy for UUV enters into the mother vessel with a fixed angle being proposed. Finally, the test function is introduced to analyze the performance of NPSO and compare with basic particle swarm optimization (BPSO), inertia weight particle swarm optimization (LWPSO, EPSO), and time-varying acceleration coefficient (TVAC). It has turned out that, for unimodal functions, NPSO performed better searching accuracy and stability than other algorithms, and, for multimodal functions, the performance of NPSO is similar to TVAC. Then, the simulation of UUV path planning is presented, and it showed that, with the strategy proposed in this paper, UUV can dodge obstacles and threats, and search for the efficiency path.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>25054169</pmid><doi>10.1155/2014/246469</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8702-339X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-13
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_213cd232a47944be93d665c900bd3521
source Wiley Online Library Open Access; Publicly Available Content Database; PubMed Central
subjects Colleges & universities
Computer Simulation
Control
Electronics in navigation
Engineering research
Hydrology
Mathematical optimization
Methods
Models, Theoretical
Motion
Motion control
Personal computers
Remote submersibles
Ships - methods
Software packages
Underwater vehicles
title Path Planning Method for UUV Homing and Docking in Movement Disorders Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20Planning%20Method%20for%20UUV%20Homing%20and%20Docking%20in%20Movement%20Disorders%20Environment&rft.jtitle=TheScientificWorld&rft.au=Chen,%20Tao&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/246469&rft_dat=%3Cgale_doaj_%3EA413710775%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c605t-28a3cbe780c81ce2c25b1b3813010c9f3e7a3c220da09d4d42d7262c68c426f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552838776&rft_id=info:pmid/25054169&rft_galeid=A413710775&rfr_iscdi=true