Loading…

An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields

Elliptic curve (EC) based cryptographic systems are more trustworthy than the currently used cryptographic approaches since they require less computational work while providing good security. This paper shows how to use an EC to make a good cryptosystem for encrypting digital audio. As a preliminary...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2023-09, Vol.11 (18), p.3824
Main Authors: Ur Rehman, Hafeez, Hazzazi, Mohammad Mazyad, Shah, Tariq, Bassfar, Zaid, Shah, Dawood
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3
cites cdi_FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3
container_end_page
container_issue 18
container_start_page 3824
container_title Mathematics (Basel)
container_volume 11
creator Ur Rehman, Hafeez
Hazzazi, Mohammad Mazyad
Shah, Tariq
Bassfar, Zaid
Shah, Dawood
description Elliptic curve (EC) based cryptographic systems are more trustworthy than the currently used cryptographic approaches since they require less computational work while providing good security. This paper shows how to use an EC to make a good cryptosystem for encrypting digital audio. As a preliminary step, the system uses an EC of a particular type over a binary extension field to distort the digital audio pixel position. It reduces the inter-correlation between pixels in the original audio, making the system resistant to statistical attacks. In creating confusion in the data, an EC over a binary extension field is used to make a different number of substitution boxes (S-boxes). The suggested design employs a unique curve that relies on efficient EC arithmetic operations in the diffusion module. As a result, it generates high-quality pseudo-random numbers (PRNs) and achieves optimal diffusion in encrypted audio files with less processing work. Audio files of various sizes and kinds can all be encrypted using the provided algorithm. Moreover, the results show that this method effectively protects many kinds of audio recordings and is more resistant to statistical and differential attacks.
doi_str_mv 10.3390/math11183824
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2146247cbafe40f998a353bb46ca877c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771806945</galeid><doaj_id>oai_doaj_org_article_2146247cbafe40f998a353bb46ca877c</doaj_id><sourcerecordid>A771806945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRsKg3f0DAq62bj83HsZZWC4IH9RyysxObst3U7Fbw3xtdkc4cJpmZ9-GFKYprWs44N-Xdzg0bSqnmmomTYsIYU1OVB6dH7_Piqu-3ZQ5DuRZmUjzPO7L0PkDAbiDzQxMiWXaQvvZDiB15gQ3ukNy7HhuS_8u2DXkCZHFIn0jiJyayCl0YMBdsm_6yOPOu7fHqr14Ub6vl6-Jx-vT8sF7Mn6bApRmmSniQQmdLjWgQS6wUBUW59IzqilIJDJmS0mhgNa1r4SR3QBUaCdSrml8U65HbRLe1-xR2Ln3Z6IL9bcT0bl3KRlu0jArJhILaeRSlN0Y7XvHMlOC0UpBZNyNrn-LHAfvBbuMhddm-ZVoawYyUKm_Nxq13l6Gh83FIDnI2uAsQO_Qh9-dKUV1mUZUFt6MAUuz7hP7fJi3tz8ns8cn4N9NGhuY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869429667</pqid></control><display><type>article</type><title>An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ur Rehman, Hafeez ; Hazzazi, Mohammad Mazyad ; Shah, Tariq ; Bassfar, Zaid ; Shah, Dawood</creator><creatorcontrib>Ur Rehman, Hafeez ; Hazzazi, Mohammad Mazyad ; Shah, Tariq ; Bassfar, Zaid ; Shah, Dawood</creatorcontrib><description>Elliptic curve (EC) based cryptographic systems are more trustworthy than the currently used cryptographic approaches since they require less computational work while providing good security. This paper shows how to use an EC to make a good cryptosystem for encrypting digital audio. As a preliminary step, the system uses an EC of a particular type over a binary extension field to distort the digital audio pixel position. It reduces the inter-correlation between pixels in the original audio, making the system resistant to statistical attacks. In creating confusion in the data, an EC over a binary extension field is used to make a different number of substitution boxes (S-boxes). The suggested design employs a unique curve that relies on efficient EC arithmetic operations in the diffusion module. As a result, it generates high-quality pseudo-random numbers (PRNs) and achieves optimal diffusion in encrypted audio files with less processing work. Audio files of various sizes and kinds can all be encrypted using the provided algorithm. Moreover, the results show that this method effectively protects many kinds of audio recordings and is more resistant to statistical and differential attacks.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11183824</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Audio data ; audio encryption ; Audio equipment ; Boxes ; Computer simulation ; Cryptography ; Curves ; Data encryption ; Data integrity ; Digital music ; Encryption ; Fields (mathematics) ; Galois field ; Mordell elliptic curve ; Multimedia ; Pixels ; Prime numbers ; pseudo-random numbers generator ; Pseudorandom ; Random numbers ; substitution box</subject><ispartof>Mathematics (Basel), 2023-09, Vol.11 (18), p.3824</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3</citedby><cites>FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3</cites><orcidid>0000-0003-1172-885X ; 0000-0002-7945-9994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869429667/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869429667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Ur Rehman, Hafeez</creatorcontrib><creatorcontrib>Hazzazi, Mohammad Mazyad</creatorcontrib><creatorcontrib>Shah, Tariq</creatorcontrib><creatorcontrib>Bassfar, Zaid</creatorcontrib><creatorcontrib>Shah, Dawood</creatorcontrib><title>An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields</title><title>Mathematics (Basel)</title><description>Elliptic curve (EC) based cryptographic systems are more trustworthy than the currently used cryptographic approaches since they require less computational work while providing good security. This paper shows how to use an EC to make a good cryptosystem for encrypting digital audio. As a preliminary step, the system uses an EC of a particular type over a binary extension field to distort the digital audio pixel position. It reduces the inter-correlation between pixels in the original audio, making the system resistant to statistical attacks. In creating confusion in the data, an EC over a binary extension field is used to make a different number of substitution boxes (S-boxes). The suggested design employs a unique curve that relies on efficient EC arithmetic operations in the diffusion module. As a result, it generates high-quality pseudo-random numbers (PRNs) and achieves optimal diffusion in encrypted audio files with less processing work. Audio files of various sizes and kinds can all be encrypted using the provided algorithm. Moreover, the results show that this method effectively protects many kinds of audio recordings and is more resistant to statistical and differential attacks.</description><subject>Algorithms</subject><subject>Audio data</subject><subject>audio encryption</subject><subject>Audio equipment</subject><subject>Boxes</subject><subject>Computer simulation</subject><subject>Cryptography</subject><subject>Curves</subject><subject>Data encryption</subject><subject>Data integrity</subject><subject>Digital music</subject><subject>Encryption</subject><subject>Fields (mathematics)</subject><subject>Galois field</subject><subject>Mordell elliptic curve</subject><subject>Multimedia</subject><subject>Pixels</subject><subject>Prime numbers</subject><subject>pseudo-random numbers generator</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>substitution box</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRsKg3f0DAq62bj83HsZZWC4IH9RyysxObst3U7Fbw3xtdkc4cJpmZ9-GFKYprWs44N-Xdzg0bSqnmmomTYsIYU1OVB6dH7_Piqu-3ZQ5DuRZmUjzPO7L0PkDAbiDzQxMiWXaQvvZDiB15gQ3ukNy7HhuS_8u2DXkCZHFIn0jiJyayCl0YMBdsm_6yOPOu7fHqr14Ub6vl6-Jx-vT8sF7Mn6bApRmmSniQQmdLjWgQS6wUBUW59IzqilIJDJmS0mhgNa1r4SR3QBUaCdSrml8U65HbRLe1-xR2Ln3Z6IL9bcT0bl3KRlu0jArJhILaeRSlN0Y7XvHMlOC0UpBZNyNrn-LHAfvBbuMhddm-ZVoawYyUKm_Nxq13l6Gh83FIDnI2uAsQO_Qh9-dKUV1mUZUFt6MAUuz7hP7fJi3tz8ns8cn4N9NGhuY</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ur Rehman, Hafeez</creator><creator>Hazzazi, Mohammad Mazyad</creator><creator>Shah, Tariq</creator><creator>Bassfar, Zaid</creator><creator>Shah, Dawood</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1172-885X</orcidid><orcidid>https://orcid.org/0000-0002-7945-9994</orcidid></search><sort><creationdate>20230901</creationdate><title>An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields</title><author>Ur Rehman, Hafeez ; Hazzazi, Mohammad Mazyad ; Shah, Tariq ; Bassfar, Zaid ; Shah, Dawood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Audio data</topic><topic>audio encryption</topic><topic>Audio equipment</topic><topic>Boxes</topic><topic>Computer simulation</topic><topic>Cryptography</topic><topic>Curves</topic><topic>Data encryption</topic><topic>Data integrity</topic><topic>Digital music</topic><topic>Encryption</topic><topic>Fields (mathematics)</topic><topic>Galois field</topic><topic>Mordell elliptic curve</topic><topic>Multimedia</topic><topic>Pixels</topic><topic>Prime numbers</topic><topic>pseudo-random numbers generator</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>substitution box</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ur Rehman, Hafeez</creatorcontrib><creatorcontrib>Hazzazi, Mohammad Mazyad</creatorcontrib><creatorcontrib>Shah, Tariq</creatorcontrib><creatorcontrib>Bassfar, Zaid</creatorcontrib><creatorcontrib>Shah, Dawood</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ur Rehman, Hafeez</au><au>Hazzazi, Mohammad Mazyad</au><au>Shah, Tariq</au><au>Bassfar, Zaid</au><au>Shah, Dawood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>11</volume><issue>18</issue><spage>3824</spage><pages>3824-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Elliptic curve (EC) based cryptographic systems are more trustworthy than the currently used cryptographic approaches since they require less computational work while providing good security. This paper shows how to use an EC to make a good cryptosystem for encrypting digital audio. As a preliminary step, the system uses an EC of a particular type over a binary extension field to distort the digital audio pixel position. It reduces the inter-correlation between pixels in the original audio, making the system resistant to statistical attacks. In creating confusion in the data, an EC over a binary extension field is used to make a different number of substitution boxes (S-boxes). The suggested design employs a unique curve that relies on efficient EC arithmetic operations in the diffusion module. As a result, it generates high-quality pseudo-random numbers (PRNs) and achieves optimal diffusion in encrypted audio files with less processing work. Audio files of various sizes and kinds can all be encrypted using the provided algorithm. Moreover, the results show that this method effectively protects many kinds of audio recordings and is more resistant to statistical and differential attacks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11183824</doi><orcidid>https://orcid.org/0000-0003-1172-885X</orcidid><orcidid>https://orcid.org/0000-0002-7945-9994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2023-09, Vol.11 (18), p.3824
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2146247cbafe40f998a353bb46ca877c
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Audio data
audio encryption
Audio equipment
Boxes
Computer simulation
Cryptography
Curves
Data encryption
Data integrity
Digital music
Encryption
Fields (mathematics)
Galois field
Mordell elliptic curve
Multimedia
Pixels
Prime numbers
pseudo-random numbers generator
Pseudorandom
Random numbers
substitution box
title An Efficient Audio Encryption Scheme Based on Elliptic Curve over Finite Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Audio%20Encryption%20Scheme%20Based%20on%20Elliptic%20Curve%20over%20Finite%20Fields&rft.jtitle=Mathematics%20(Basel)&rft.au=Ur%20Rehman,%20Hafeez&rft.date=2023-09-01&rft.volume=11&rft.issue=18&rft.spage=3824&rft.pages=3824-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11183824&rft_dat=%3Cgale_doaj_%3EA771806945%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-74fc648390d4dee0e571c7136f2185116c2e276698c2b1bb4a63ac17e96c1f7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869429667&rft_id=info:pmid/&rft_galeid=A771806945&rfr_iscdi=true