Loading…
Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models
In the past few decades, a lot of optimization methods have been applied in estimating the parameter of photovoltaic (PV) models and obtained better results, but these methods still have some deficiencies, such as higher time complexity and poor stability. To tackle these problems, an enhanced succe...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Complexity (New York, N.Y.) |
container_volume | 2021 |
creator | Song, Yingjie Wu, Daqing Wagdy Mohamed, Ali Zhou, Xiangbing Zhang, Bin Deng, Wu |
description | In the past few decades, a lot of optimization methods have been applied in estimating the parameter of photovoltaic (PV) models and obtained better results, but these methods still have some deficiencies, such as higher time complexity and poor stability. To tackle these problems, an enhanced success history adaptive DE with greedy mutation strategy (EBLSHADE) is employed to optimize parameters of PV models to propose a parameter optimization method in this paper. In the EBLSHADE, the linear population size reduction strategy is used to gradually reduce population to improve the search capabilities and balance the exploitation and exploration capabilities. The less and more greedy mutation strategy is used to enhance the exploitation capability and the exploration capability. Finally, a parameter optimization method based on EBLSHADE is proposed to optimize parameters of PV models. The different PV models are selected to prove the effectiveness of the proposed method. Comparison results demonstrate that the EBLSHADE is an effective and efficient method and the parameter optimization method is beneficial to design, control, and optimize the PV systems. |
doi_str_mv | 10.1155/2021/6660115 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_215d14e42f33442dbd6b1f3958b9e3c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_215d14e42f33442dbd6b1f3958b9e3c7</doaj_id><sourcerecordid>2487052730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603</originalsourceid><addsrcrecordid>eNp9kUtPAjEUhSdGExHd-QOauNSRvqadWRJEIcFA4mPbdPqQEphiWzD46x2EuHR1e0--nHPTk2XXCN4jVBQ9DDHqMcZgu51kHQSrKocFZqf7N2c55iU_zy5iXEAIK0Z4J3sfNnPZKKPBy0YpEyMYuZh82IG-luvktgY8DIH1AcxkkCuTTADTVl-5b5mcb4C3YDb3yW_9MkmnwLPXZhkvszMrl9FcHWc3e3scvg5G-WT6NB70J7mikKS8MoxiLcuqgLCusaQI0ZozZjEjlS5biXGFUY0RtlYqVFNNOTKEEwMVYZB0s_HBV3u5EOvgVjLshJdO_Ao-fAgZklNLIzAqNKKGYksIbVNrzWpkSVWUdWWI4q3XzcFrHfznxsQkFn4TmvZ8gWnJ24_kZJ94d6BU8DEGY_9SERT7FsS-BXFsocVvD_jcNVp-uf_pH3mihQY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487052730</pqid></control><display><type>article</type><title>Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Song, Yingjie ; Wu, Daqing ; Wagdy Mohamed, Ali ; Zhou, Xiangbing ; Zhang, Bin ; Deng, Wu</creator><contributor>Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</contributor><creatorcontrib>Song, Yingjie ; Wu, Daqing ; Wagdy Mohamed, Ali ; Zhou, Xiangbing ; Zhang, Bin ; Deng, Wu ; Khalil, Ahmed Mostafa ; Ahmed Mostafa Khalil</creatorcontrib><description>In the past few decades, a lot of optimization methods have been applied in estimating the parameter of photovoltaic (PV) models and obtained better results, but these methods still have some deficiencies, such as higher time complexity and poor stability. To tackle these problems, an enhanced success history adaptive DE with greedy mutation strategy (EBLSHADE) is employed to optimize parameters of PV models to propose a parameter optimization method in this paper. In the EBLSHADE, the linear population size reduction strategy is used to gradually reduce population to improve the search capabilities and balance the exploitation and exploration capabilities. The less and more greedy mutation strategy is used to enhance the exploitation capability and the exploration capability. Finally, a parameter optimization method based on EBLSHADE is proposed to optimize parameters of PV models. The different PV models are selected to prove the effectiveness of the proposed method. Comparison results demonstrate that the EBLSHADE is an effective and efficient method and the parameter optimization method is beneficial to design, control, and optimize the PV systems.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/6660115</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Design optimization ; Efficiency ; Exploitation ; Genetic algorithms ; Heuristic ; Mathematical models ; Methods ; Mutation ; Optimization algorithms ; Parameter estimation ; Parameter identification ; Photovoltaic cells ; Population ; Size reduction ; Solar energy ; Strategy</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Yingjie Song et al.</rights><rights>Copyright © 2021 Yingjie Song et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603</citedby><cites>FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603</cites><orcidid>0000-0001-6486-5554 ; 0000-0002-5895-2632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Khalil, Ahmed Mostafa</contributor><contributor>Ahmed Mostafa Khalil</contributor><creatorcontrib>Song, Yingjie</creatorcontrib><creatorcontrib>Wu, Daqing</creatorcontrib><creatorcontrib>Wagdy Mohamed, Ali</creatorcontrib><creatorcontrib>Zhou, Xiangbing</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Deng, Wu</creatorcontrib><title>Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models</title><title>Complexity (New York, N.Y.)</title><description>In the past few decades, a lot of optimization methods have been applied in estimating the parameter of photovoltaic (PV) models and obtained better results, but these methods still have some deficiencies, such as higher time complexity and poor stability. To tackle these problems, an enhanced success history adaptive DE with greedy mutation strategy (EBLSHADE) is employed to optimize parameters of PV models to propose a parameter optimization method in this paper. In the EBLSHADE, the linear population size reduction strategy is used to gradually reduce population to improve the search capabilities and balance the exploitation and exploration capabilities. The less and more greedy mutation strategy is used to enhance the exploitation capability and the exploration capability. Finally, a parameter optimization method based on EBLSHADE is proposed to optimize parameters of PV models. The different PV models are selected to prove the effectiveness of the proposed method. Comparison results demonstrate that the EBLSHADE is an effective and efficient method and the parameter optimization method is beneficial to design, control, and optimize the PV systems.</description><subject>Design optimization</subject><subject>Efficiency</subject><subject>Exploitation</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mutation</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Photovoltaic cells</subject><subject>Population</subject><subject>Size reduction</subject><subject>Solar energy</subject><subject>Strategy</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtPAjEUhSdGExHd-QOauNSRvqadWRJEIcFA4mPbdPqQEphiWzD46x2EuHR1e0--nHPTk2XXCN4jVBQ9DDHqMcZgu51kHQSrKocFZqf7N2c55iU_zy5iXEAIK0Z4J3sfNnPZKKPBy0YpEyMYuZh82IG-luvktgY8DIH1AcxkkCuTTADTVl-5b5mcb4C3YDb3yW_9MkmnwLPXZhkvszMrl9FcHWc3e3scvg5G-WT6NB70J7mikKS8MoxiLcuqgLCusaQI0ZozZjEjlS5biXGFUY0RtlYqVFNNOTKEEwMVYZB0s_HBV3u5EOvgVjLshJdO_Ao-fAgZklNLIzAqNKKGYksIbVNrzWpkSVWUdWWI4q3XzcFrHfznxsQkFn4TmvZ8gWnJ24_kZJ94d6BU8DEGY_9SERT7FsS-BXFsocVvD_jcNVp-uf_pH3mihQY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Song, Yingjie</creator><creator>Wu, Daqing</creator><creator>Wagdy Mohamed, Ali</creator><creator>Zhou, Xiangbing</creator><creator>Zhang, Bin</creator><creator>Deng, Wu</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6486-5554</orcidid><orcidid>https://orcid.org/0000-0002-5895-2632</orcidid></search><sort><creationdate>2021</creationdate><title>Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models</title><author>Song, Yingjie ; Wu, Daqing ; Wagdy Mohamed, Ali ; Zhou, Xiangbing ; Zhang, Bin ; Deng, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Design optimization</topic><topic>Efficiency</topic><topic>Exploitation</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mutation</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Photovoltaic cells</topic><topic>Population</topic><topic>Size reduction</topic><topic>Solar energy</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yingjie</creatorcontrib><creatorcontrib>Wu, Daqing</creatorcontrib><creatorcontrib>Wagdy Mohamed, Ali</creatorcontrib><creatorcontrib>Zhou, Xiangbing</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Deng, Wu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yingjie</au><au>Wu, Daqing</au><au>Wagdy Mohamed, Ali</au><au>Zhou, Xiangbing</au><au>Zhang, Bin</au><au>Deng, Wu</au><au>Khalil, Ahmed Mostafa</au><au>Ahmed Mostafa Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>In the past few decades, a lot of optimization methods have been applied in estimating the parameter of photovoltaic (PV) models and obtained better results, but these methods still have some deficiencies, such as higher time complexity and poor stability. To tackle these problems, an enhanced success history adaptive DE with greedy mutation strategy (EBLSHADE) is employed to optimize parameters of PV models to propose a parameter optimization method in this paper. In the EBLSHADE, the linear population size reduction strategy is used to gradually reduce population to improve the search capabilities and balance the exploitation and exploration capabilities. The less and more greedy mutation strategy is used to enhance the exploitation capability and the exploration capability. Finally, a parameter optimization method based on EBLSHADE is proposed to optimize parameters of PV models. The different PV models are selected to prove the effectiveness of the proposed method. Comparison results demonstrate that the EBLSHADE is an effective and efficient method and the parameter optimization method is beneficial to design, control, and optimize the PV systems.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/6660115</doi><orcidid>https://orcid.org/0000-0001-6486-5554</orcidid><orcidid>https://orcid.org/0000-0002-5895-2632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2021, Vol.2021 (1) |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_215d14e42f33442dbd6b1f3958b9e3c7 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | Design optimization Efficiency Exploitation Genetic algorithms Heuristic Mathematical models Methods Mutation Optimization algorithms Parameter estimation Parameter identification Photovoltaic cells Population Size reduction Solar energy Strategy |
title | Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Success%20History%20Adaptive%20DE%20for%20Parameter%20Optimization%20of%20Photovoltaic%20Models&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Song,%20Yingjie&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/6660115&rft_dat=%3Cproquest_doaj_%3E2487052730%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-9e642da89500bb2a4114b766f2639d8bb267c21b212ffac1b4d471e373e0c3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487052730&rft_id=info:pmid/&rfr_iscdi=true |