Loading…
On the way to plant data commons – a genotyping use case
Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of t...
Saved in:
Published in: | Journal of integrative bioinformatics 2022-12, Vol.19 (4), p.187-9 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443 |
container_end_page | 9 |
container_issue | 4 |
container_start_page | 187 |
container_title | Journal of integrative bioinformatics |
container_volume | 19 |
creator | Feser, Manuel König, Patrick Fiebig, Anne Arend, Daniel Lange, Matthias Scholz, Uwe |
description | Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service. |
doi_str_mv | 10.1515/jib-2022-0033 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2181ca985a664d57a78744745bd7a6db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2181ca985a664d57a78744745bd7a6db</doaj_id><sourcerecordid>2710971620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</originalsourceid><addsrcrecordid>eNptkLtOHDEUQK0oUUCEMm3kkmaC3x6ni1AISEg0SW3dGd_dzGpmvLE9QtvxD_whX4KXBZQibmxdHx3Lh5DPnH3lmuvzzdA1ggnRMCblO3LMDZeN0ty8_-d8RE5z3rC6pGudZR_JkTTMaC7FMfl2O9PyB-kd7GiJdDvCXGiAArSP0xTnTB_vHyjQNc6x7LbDvKZLRtpDxk_kwwrGjKcv-wn5ffnj18VVc3P78_ri-03TK2VLg3JlXOi7oFojLTKxChrrFVrXmtAqJ4VyWFFnIGgZhJBGMbQBmDB1Lk_I9cEbImz8Ng0TpJ2PMPjnQUxrD6kM_Yhe8Jb34FoNxqigLdjWVrPSXbBgQlddZwfXNsW_C-bipyH3ONZvY1yyF5YzZ7kRrKLNAe1TzDnh6u1pzvy-vq_1_b6-39ev_JcX9dJNGN7o19YVaA_AHYwFU8B1Wnb14DdxSXMt-H8xd0o-ARuvj_M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710971620</pqid></control><display><type>article</type><title>On the way to plant data commons – a genotyping use case</title><source>PubMed (Medline)</source><source>Walter De Gruyter: Open Access Journals</source><creator>Feser, Manuel ; König, Patrick ; Fiebig, Anne ; Arend, Daniel ; Lange, Matthias ; Scholz, Uwe</creator><creatorcontrib>Feser, Manuel ; König, Patrick ; Fiebig, Anne ; Arend, Daniel ; Lange, Matthias ; Scholz, Uwe</creatorcontrib><description>Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.</description><identifier>ISSN: 1613-4516</identifier><identifier>EISSN: 1613-4516</identifier><identifier>DOI: 10.1515/jib-2022-0033</identifier><identifier>PMID: 36065132</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>biodiversity ; cloud computing ; Computational Biology ; Ecosystem ; Genotype ; imputation ; plants ; research data commons ; Software</subject><ispartof>Journal of integrative bioinformatics, 2022-12, Vol.19 (4), p.187-9</ispartof><rights>2022 the author(s), published by De Gruyter, Berlin/Boston.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</citedby><cites>FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</cites><orcidid>0000-0002-8948-6793 ; 0000-0001-6113-3518 ; 0000-0002-2455-5938 ; 0000-0002-4316-078X ; 0000-0003-3159-3593 ; 0000-0001-6546-1818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jib-2022-0033/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jib-2022-0033/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36065132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feser, Manuel</creatorcontrib><creatorcontrib>König, Patrick</creatorcontrib><creatorcontrib>Fiebig, Anne</creatorcontrib><creatorcontrib>Arend, Daniel</creatorcontrib><creatorcontrib>Lange, Matthias</creatorcontrib><creatorcontrib>Scholz, Uwe</creatorcontrib><title>On the way to plant data commons – a genotyping use case</title><title>Journal of integrative bioinformatics</title><addtitle>J Integr Bioinform</addtitle><description>Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.</description><subject>biodiversity</subject><subject>cloud computing</subject><subject>Computational Biology</subject><subject>Ecosystem</subject><subject>Genotype</subject><subject>imputation</subject><subject>plants</subject><subject>research data commons</subject><subject>Software</subject><issn>1613-4516</issn><issn>1613-4516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkLtOHDEUQK0oUUCEMm3kkmaC3x6ni1AISEg0SW3dGd_dzGpmvLE9QtvxD_whX4KXBZQibmxdHx3Lh5DPnH3lmuvzzdA1ggnRMCblO3LMDZeN0ty8_-d8RE5z3rC6pGudZR_JkTTMaC7FMfl2O9PyB-kd7GiJdDvCXGiAArSP0xTnTB_vHyjQNc6x7LbDvKZLRtpDxk_kwwrGjKcv-wn5ffnj18VVc3P78_ri-03TK2VLg3JlXOi7oFojLTKxChrrFVrXmtAqJ4VyWFFnIGgZhJBGMbQBmDB1Lk_I9cEbImz8Ng0TpJ2PMPjnQUxrD6kM_Yhe8Jb34FoNxqigLdjWVrPSXbBgQlddZwfXNsW_C-bipyH3ONZvY1yyF5YzZ7kRrKLNAe1TzDnh6u1pzvy-vq_1_b6-39ev_JcX9dJNGN7o19YVaA_AHYwFU8B1Wnb14DdxSXMt-H8xd0o-ARuvj_M</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Feser, Manuel</creator><creator>König, Patrick</creator><creator>Fiebig, Anne</creator><creator>Arend, Daniel</creator><creator>Lange, Matthias</creator><creator>Scholz, Uwe</creator><general>De Gruyter</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8948-6793</orcidid><orcidid>https://orcid.org/0000-0001-6113-3518</orcidid><orcidid>https://orcid.org/0000-0002-2455-5938</orcidid><orcidid>https://orcid.org/0000-0002-4316-078X</orcidid><orcidid>https://orcid.org/0000-0003-3159-3593</orcidid><orcidid>https://orcid.org/0000-0001-6546-1818</orcidid></search><sort><creationdate>20221201</creationdate><title>On the way to plant data commons – a genotyping use case</title><author>Feser, Manuel ; König, Patrick ; Fiebig, Anne ; Arend, Daniel ; Lange, Matthias ; Scholz, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biodiversity</topic><topic>cloud computing</topic><topic>Computational Biology</topic><topic>Ecosystem</topic><topic>Genotype</topic><topic>imputation</topic><topic>plants</topic><topic>research data commons</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feser, Manuel</creatorcontrib><creatorcontrib>König, Patrick</creatorcontrib><creatorcontrib>Fiebig, Anne</creatorcontrib><creatorcontrib>Arend, Daniel</creatorcontrib><creatorcontrib>Lange, Matthias</creatorcontrib><creatorcontrib>Scholz, Uwe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of integrative bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feser, Manuel</au><au>König, Patrick</au><au>Fiebig, Anne</au><au>Arend, Daniel</au><au>Lange, Matthias</au><au>Scholz, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the way to plant data commons – a genotyping use case</atitle><jtitle>Journal of integrative bioinformatics</jtitle><addtitle>J Integr Bioinform</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>187</spage><epage>9</epage><pages>187-9</pages><issn>1613-4516</issn><eissn>1613-4516</eissn><abstract>Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>36065132</pmid><doi>10.1515/jib-2022-0033</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8948-6793</orcidid><orcidid>https://orcid.org/0000-0001-6113-3518</orcidid><orcidid>https://orcid.org/0000-0002-2455-5938</orcidid><orcidid>https://orcid.org/0000-0002-4316-078X</orcidid><orcidid>https://orcid.org/0000-0003-3159-3593</orcidid><orcidid>https://orcid.org/0000-0001-6546-1818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4516 |
ispartof | Journal of integrative bioinformatics, 2022-12, Vol.19 (4), p.187-9 |
issn | 1613-4516 1613-4516 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2181ca985a664d57a78744745bd7a6db |
source | PubMed (Medline); Walter De Gruyter: Open Access Journals |
subjects | biodiversity cloud computing Computational Biology Ecosystem Genotype imputation plants research data commons Software |
title | On the way to plant data commons – a genotyping use case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20way%20to%20plant%20data%20commons%20%E2%80%93%20a%20genotyping%20use%20case&rft.jtitle=Journal%20of%20integrative%20bioinformatics&rft.au=Feser,%20Manuel&rft.date=2022-12-01&rft.volume=19&rft.issue=4&rft.spage=187&rft.epage=9&rft.pages=187-9&rft.issn=1613-4516&rft.eissn=1613-4516&rft_id=info:doi/10.1515/jib-2022-0033&rft_dat=%3Cproquest_doaj_%3E2710971620%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2710971620&rft_id=info:pmid/36065132&rfr_iscdi=true |