Loading…

On the way to plant data commons – a genotyping use case

Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of integrative bioinformatics 2022-12, Vol.19 (4), p.187-9
Main Authors: Feser, Manuel, König, Patrick, Fiebig, Anne, Arend, Daniel, Lange, Matthias, Scholz, Uwe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443
cites cdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443
container_end_page 9
container_issue 4
container_start_page 187
container_title Journal of integrative bioinformatics
container_volume 19
creator Feser, Manuel
König, Patrick
Fiebig, Anne
Arend, Daniel
Lange, Matthias
Scholz, Uwe
description Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.
doi_str_mv 10.1515/jib-2022-0033
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2181ca985a664d57a78744745bd7a6db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2181ca985a664d57a78744745bd7a6db</doaj_id><sourcerecordid>2710971620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</originalsourceid><addsrcrecordid>eNptkLtOHDEUQK0oUUCEMm3kkmaC3x6ni1AISEg0SW3dGd_dzGpmvLE9QtvxD_whX4KXBZQibmxdHx3Lh5DPnH3lmuvzzdA1ggnRMCblO3LMDZeN0ty8_-d8RE5z3rC6pGudZR_JkTTMaC7FMfl2O9PyB-kd7GiJdDvCXGiAArSP0xTnTB_vHyjQNc6x7LbDvKZLRtpDxk_kwwrGjKcv-wn5ffnj18VVc3P78_ri-03TK2VLg3JlXOi7oFojLTKxChrrFVrXmtAqJ4VyWFFnIGgZhJBGMbQBmDB1Lk_I9cEbImz8Ng0TpJ2PMPjnQUxrD6kM_Yhe8Jb34FoNxqigLdjWVrPSXbBgQlddZwfXNsW_C-bipyH3ONZvY1yyF5YzZ7kRrKLNAe1TzDnh6u1pzvy-vq_1_b6-39ev_JcX9dJNGN7o19YVaA_AHYwFU8B1Wnb14DdxSXMt-H8xd0o-ARuvj_M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2710971620</pqid></control><display><type>article</type><title>On the way to plant data commons – a genotyping use case</title><source>PubMed (Medline)</source><source>Walter De Gruyter: Open Access Journals</source><creator>Feser, Manuel ; König, Patrick ; Fiebig, Anne ; Arend, Daniel ; Lange, Matthias ; Scholz, Uwe</creator><creatorcontrib>Feser, Manuel ; König, Patrick ; Fiebig, Anne ; Arend, Daniel ; Lange, Matthias ; Scholz, Uwe</creatorcontrib><description>Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.</description><identifier>ISSN: 1613-4516</identifier><identifier>EISSN: 1613-4516</identifier><identifier>DOI: 10.1515/jib-2022-0033</identifier><identifier>PMID: 36065132</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>biodiversity ; cloud computing ; Computational Biology ; Ecosystem ; Genotype ; imputation ; plants ; research data commons ; Software</subject><ispartof>Journal of integrative bioinformatics, 2022-12, Vol.19 (4), p.187-9</ispartof><rights>2022 the author(s), published by De Gruyter, Berlin/Boston.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</citedby><cites>FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</cites><orcidid>0000-0002-8948-6793 ; 0000-0001-6113-3518 ; 0000-0002-2455-5938 ; 0000-0002-4316-078X ; 0000-0003-3159-3593 ; 0000-0001-6546-1818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jib-2022-0033/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jib-2022-0033/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36065132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feser, Manuel</creatorcontrib><creatorcontrib>König, Patrick</creatorcontrib><creatorcontrib>Fiebig, Anne</creatorcontrib><creatorcontrib>Arend, Daniel</creatorcontrib><creatorcontrib>Lange, Matthias</creatorcontrib><creatorcontrib>Scholz, Uwe</creatorcontrib><title>On the way to plant data commons – a genotyping use case</title><title>Journal of integrative bioinformatics</title><addtitle>J Integr Bioinform</addtitle><description>Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.</description><subject>biodiversity</subject><subject>cloud computing</subject><subject>Computational Biology</subject><subject>Ecosystem</subject><subject>Genotype</subject><subject>imputation</subject><subject>plants</subject><subject>research data commons</subject><subject>Software</subject><issn>1613-4516</issn><issn>1613-4516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkLtOHDEUQK0oUUCEMm3kkmaC3x6ni1AISEg0SW3dGd_dzGpmvLE9QtvxD_whX4KXBZQibmxdHx3Lh5DPnH3lmuvzzdA1ggnRMCblO3LMDZeN0ty8_-d8RE5z3rC6pGudZR_JkTTMaC7FMfl2O9PyB-kd7GiJdDvCXGiAArSP0xTnTB_vHyjQNc6x7LbDvKZLRtpDxk_kwwrGjKcv-wn5ffnj18VVc3P78_ri-03TK2VLg3JlXOi7oFojLTKxChrrFVrXmtAqJ4VyWFFnIGgZhJBGMbQBmDB1Lk_I9cEbImz8Ng0TpJ2PMPjnQUxrD6kM_Yhe8Jb34FoNxqigLdjWVrPSXbBgQlddZwfXNsW_C-bipyH3ONZvY1yyF5YzZ7kRrKLNAe1TzDnh6u1pzvy-vq_1_b6-39ev_JcX9dJNGN7o19YVaA_AHYwFU8B1Wnb14DdxSXMt-H8xd0o-ARuvj_M</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Feser, Manuel</creator><creator>König, Patrick</creator><creator>Fiebig, Anne</creator><creator>Arend, Daniel</creator><creator>Lange, Matthias</creator><creator>Scholz, Uwe</creator><general>De Gruyter</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8948-6793</orcidid><orcidid>https://orcid.org/0000-0001-6113-3518</orcidid><orcidid>https://orcid.org/0000-0002-2455-5938</orcidid><orcidid>https://orcid.org/0000-0002-4316-078X</orcidid><orcidid>https://orcid.org/0000-0003-3159-3593</orcidid><orcidid>https://orcid.org/0000-0001-6546-1818</orcidid></search><sort><creationdate>20221201</creationdate><title>On the way to plant data commons – a genotyping use case</title><author>Feser, Manuel ; König, Patrick ; Fiebig, Anne ; Arend, Daniel ; Lange, Matthias ; Scholz, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biodiversity</topic><topic>cloud computing</topic><topic>Computational Biology</topic><topic>Ecosystem</topic><topic>Genotype</topic><topic>imputation</topic><topic>plants</topic><topic>research data commons</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feser, Manuel</creatorcontrib><creatorcontrib>König, Patrick</creatorcontrib><creatorcontrib>Fiebig, Anne</creatorcontrib><creatorcontrib>Arend, Daniel</creatorcontrib><creatorcontrib>Lange, Matthias</creatorcontrib><creatorcontrib>Scholz, Uwe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of integrative bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feser, Manuel</au><au>König, Patrick</au><au>Fiebig, Anne</au><au>Arend, Daniel</au><au>Lange, Matthias</au><au>Scholz, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the way to plant data commons – a genotyping use case</atitle><jtitle>Journal of integrative bioinformatics</jtitle><addtitle>J Integr Bioinform</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>187</spage><epage>9</epage><pages>187-9</pages><issn>1613-4516</issn><eissn>1613-4516</eissn><abstract>Over the last years it has been observed that the progress in data collection in life science has created increasing demand and opportunities for advanced bioinformatics. This includes data management as well as the individual data analysis and often covers the entire data life cycle. A variety of tools have been developed to store, share, or reuse the data produced in the different domains such as genotyping. Especially imputation, as a subfield of genotyping, requires good Research Data Management (RDM) strategies to enable use and re-use of genotypic data. To aim for sustainable software, it is necessary to develop tools and surrounding ecosystems, which are reusable and maintainable. Reusability in the context of streamlined tools can e.g. be achieved by standardizing the input and output of the different tools and adapting to open and broadly used file formats. By using such established file formats, the tools can also be connected with others, improving the overall interoperability of the software. Finally, it is important to build strong communities that maintain the tools by developing and contributing new features and maintenance updates. In this article, concepts for this will be presented for an imputation service.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>36065132</pmid><doi>10.1515/jib-2022-0033</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8948-6793</orcidid><orcidid>https://orcid.org/0000-0001-6113-3518</orcidid><orcidid>https://orcid.org/0000-0002-2455-5938</orcidid><orcidid>https://orcid.org/0000-0002-4316-078X</orcidid><orcidid>https://orcid.org/0000-0003-3159-3593</orcidid><orcidid>https://orcid.org/0000-0001-6546-1818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4516
ispartof Journal of integrative bioinformatics, 2022-12, Vol.19 (4), p.187-9
issn 1613-4516
1613-4516
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2181ca985a664d57a78744745bd7a6db
source PubMed (Medline); Walter De Gruyter: Open Access Journals
subjects biodiversity
cloud computing
Computational Biology
Ecosystem
Genotype
imputation
plants
research data commons
Software
title On the way to plant data commons – a genotyping use case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20way%20to%20plant%20data%20commons%20%E2%80%93%20a%20genotyping%20use%20case&rft.jtitle=Journal%20of%20integrative%20bioinformatics&rft.au=Feser,%20Manuel&rft.date=2022-12-01&rft.volume=19&rft.issue=4&rft.spage=187&rft.epage=9&rft.pages=187-9&rft.issn=1613-4516&rft.eissn=1613-4516&rft_id=info:doi/10.1515/jib-2022-0033&rft_dat=%3Cproquest_doaj_%3E2710971620%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-e3f69dcbd48637e02fd5ec44e7986d8493249e44796ad53d223640e7da026e443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2710971620&rft_id=info:pmid/36065132&rfr_iscdi=true