Loading…
Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs
Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study,...
Saved in:
Published in: | Diagnostics (Basel) 2023-11, Vol.13 (23), p.3522 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23 |
container_end_page | |
container_issue | 23 |
container_start_page | 3522 |
container_title | Diagnostics (Basel) |
container_volume | 13 |
creator | Graafen, Dirk Halfmann, Moritz C Emrich, Tilman Yang, Yang Kreuter, Michael Düber, Christoph Kloeckner, Roman Müller, Lukas Jorg, Tobias |
description | Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging. |
doi_str_mv | 10.3390/diagnostics13233522 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_21a6854e7ecf47aebb67ac26789d85df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775889091</galeid><doaj_id>oai_doaj_org_article_21a6854e7ecf47aebb67ac26789d85df</doaj_id><sourcerecordid>A775889091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</originalsourceid><addsrcrecordid>eNptUstq3DAUFaEhCdN8QaEYuunGifWypGWYpElgICWPtZBlyaPBtqaSTGi_vvJMkj6ItNDlcM65ug8APsHqDGNRnbdOdaOPyekIMcKYInQATlDFaEkI5B_-io_BaYybKh8BMUf0CBxjXtU1q_EJeL7bJje4Xyo5PxbeFmltinuj_RhTmPQOfTApubGLhfWhWPnn8tJHUzz1KajyxnXr8t5E30877ve1T34sl34aZ01xaZLRKeuWj6_uqyl7fQSHVvXRnL68C_D07epxeVOu7q5vlxerUlMIU8lJTWpOK6ZqKhpkiSKcIk0oF9ryhggLERYUQ6KhbnRDreaqbSwmrW6xQngBbve-rVcbuQ1uUOGn9MrJHeBDJ1XIXeyNRFDlVMQwoy1hyjRNzZRGNeOi5bS12evr3msb_I_JxCQHF7XpezUaP0WJRIUE5QjyTP3yH3XjpzDmSiXiQsxjgOwPq1M5vxutzy3Vs6m8YIxyLuaRLcDZO6x8WzO4PChjXcb_EeC9QAcfYzD2rW5YyXl75Dvbk1WfX748NYNp3zSvu4J_A9-7whI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899382517</pqid></control><display><type>article</type><title>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Graafen, Dirk ; Halfmann, Moritz C ; Emrich, Tilman ; Yang, Yang ; Kreuter, Michael ; Düber, Christoph ; Kloeckner, Roman ; Müller, Lukas ; Jorg, Tobias</creator><creatorcontrib>Graafen, Dirk ; Halfmann, Moritz C ; Emrich, Tilman ; Yang, Yang ; Kreuter, Michael ; Düber, Christoph ; Kloeckner, Roman ; Müller, Lukas ; Jorg, Tobias</creatorcontrib><description>Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics13233522</identifier><identifier>PMID: 38066763</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agreements ; CT imaging ; Detectors ; lung ; Lung diseases ; Lungs ; Medical imaging ; Medical research ; Medical screening ; Medicine, Experimental ; Patients ; photon-counting detector CT ; quantum iterative reconstruction ; Radiation ; Sensors ; slice thickness ; Standard deviation ; Tomography ; ultra-high resolution</subject><ispartof>Diagnostics (Basel), 2023-11, Vol.13 (23), p.3522</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</citedby><cites>FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</cites><orcidid>0000-0003-4156-7727 ; 0000-0002-2588-2009 ; 0000-0001-5492-4792 ; 0009-0003-4116-9048 ; 0000-0001-7550-0171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2899382517/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2899382517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38066763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graafen, Dirk</creatorcontrib><creatorcontrib>Halfmann, Moritz C</creatorcontrib><creatorcontrib>Emrich, Tilman</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Kreuter, Michael</creatorcontrib><creatorcontrib>Düber, Christoph</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Müller, Lukas</creatorcontrib><creatorcontrib>Jorg, Tobias</creatorcontrib><title>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.</description><subject>Agreements</subject><subject>CT imaging</subject><subject>Detectors</subject><subject>lung</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medical screening</subject><subject>Medicine, Experimental</subject><subject>Patients</subject><subject>photon-counting detector CT</subject><subject>quantum iterative reconstruction</subject><subject>Radiation</subject><subject>Sensors</subject><subject>slice thickness</subject><subject>Standard deviation</subject><subject>Tomography</subject><subject>ultra-high resolution</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstq3DAUFaEhCdN8QaEYuunGifWypGWYpElgICWPtZBlyaPBtqaSTGi_vvJMkj6ItNDlcM65ug8APsHqDGNRnbdOdaOPyekIMcKYInQATlDFaEkI5B_-io_BaYybKh8BMUf0CBxjXtU1q_EJeL7bJje4Xyo5PxbeFmltinuj_RhTmPQOfTApubGLhfWhWPnn8tJHUzz1KajyxnXr8t5E30877ve1T34sl34aZ01xaZLRKeuWj6_uqyl7fQSHVvXRnL68C_D07epxeVOu7q5vlxerUlMIU8lJTWpOK6ZqKhpkiSKcIk0oF9ryhggLERYUQ6KhbnRDreaqbSwmrW6xQngBbve-rVcbuQ1uUOGn9MrJHeBDJ1XIXeyNRFDlVMQwoy1hyjRNzZRGNeOi5bS12evr3msb_I_JxCQHF7XpezUaP0WJRIUE5QjyTP3yH3XjpzDmSiXiQsxjgOwPq1M5vxutzy3Vs6m8YIxyLuaRLcDZO6x8WzO4PChjXcb_EeC9QAcfYzD2rW5YyXl75Dvbk1WfX748NYNp3zSvu4J_A9-7whI</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>Graafen, Dirk</creator><creator>Halfmann, Moritz C</creator><creator>Emrich, Tilman</creator><creator>Yang, Yang</creator><creator>Kreuter, Michael</creator><creator>Düber, Christoph</creator><creator>Kloeckner, Roman</creator><creator>Müller, Lukas</creator><creator>Jorg, Tobias</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4156-7727</orcidid><orcidid>https://orcid.org/0000-0002-2588-2009</orcidid><orcidid>https://orcid.org/0000-0001-5492-4792</orcidid><orcidid>https://orcid.org/0009-0003-4116-9048</orcidid><orcidid>https://orcid.org/0000-0001-7550-0171</orcidid></search><sort><creationdate>20231124</creationdate><title>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</title><author>Graafen, Dirk ; Halfmann, Moritz C ; Emrich, Tilman ; Yang, Yang ; Kreuter, Michael ; Düber, Christoph ; Kloeckner, Roman ; Müller, Lukas ; Jorg, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agreements</topic><topic>CT imaging</topic><topic>Detectors</topic><topic>lung</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medical screening</topic><topic>Medicine, Experimental</topic><topic>Patients</topic><topic>photon-counting detector CT</topic><topic>quantum iterative reconstruction</topic><topic>Radiation</topic><topic>Sensors</topic><topic>slice thickness</topic><topic>Standard deviation</topic><topic>Tomography</topic><topic>ultra-high resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graafen, Dirk</creatorcontrib><creatorcontrib>Halfmann, Moritz C</creatorcontrib><creatorcontrib>Emrich, Tilman</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Kreuter, Michael</creatorcontrib><creatorcontrib>Düber, Christoph</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Müller, Lukas</creatorcontrib><creatorcontrib>Jorg, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graafen, Dirk</au><au>Halfmann, Moritz C</au><au>Emrich, Tilman</au><au>Yang, Yang</au><au>Kreuter, Michael</au><au>Düber, Christoph</au><au>Kloeckner, Roman</au><au>Müller, Lukas</au><au>Jorg, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2023-11-24</date><risdate>2023</risdate><volume>13</volume><issue>23</issue><spage>3522</spage><pages>3522-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38066763</pmid><doi>10.3390/diagnostics13233522</doi><orcidid>https://orcid.org/0000-0003-4156-7727</orcidid><orcidid>https://orcid.org/0000-0002-2588-2009</orcidid><orcidid>https://orcid.org/0000-0001-5492-4792</orcidid><orcidid>https://orcid.org/0009-0003-4116-9048</orcidid><orcidid>https://orcid.org/0000-0001-7550-0171</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4418 |
ispartof | Diagnostics (Basel), 2023-11, Vol.13 (23), p.3522 |
issn | 2075-4418 2075-4418 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_21a6854e7ecf47aebb67ac26789d85df |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Agreements CT imaging Detectors lung Lung diseases Lungs Medical imaging Medical research Medical screening Medicine, Experimental Patients photon-counting detector CT quantum iterative reconstruction Radiation Sensors slice thickness Standard deviation Tomography ultra-high resolution |
title | Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T03%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20Reconstruction%20Settings%20for%20Low-Dose%20Ultra-High-Resolution%20Photon-Counting%20Detector%20CT%20of%20the%20Lungs&rft.jtitle=Diagnostics%20(Basel)&rft.au=Graafen,%20Dirk&rft.date=2023-11-24&rft.volume=13&rft.issue=23&rft.spage=3522&rft.pages=3522-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics13233522&rft_dat=%3Cgale_doaj_%3EA775889091%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899382517&rft_id=info:pmid/38066763&rft_galeid=A775889091&rfr_iscdi=true |