Loading…

Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs

Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study,...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2023-11, Vol.13 (23), p.3522
Main Authors: Graafen, Dirk, Halfmann, Moritz C, Emrich, Tilman, Yang, Yang, Kreuter, Michael, Düber, Christoph, Kloeckner, Roman, Müller, Lukas, Jorg, Tobias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23
cites cdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23
container_end_page
container_issue 23
container_start_page 3522
container_title Diagnostics (Basel)
container_volume 13
creator Graafen, Dirk
Halfmann, Moritz C
Emrich, Tilman
Yang, Yang
Kreuter, Michael
Düber, Christoph
Kloeckner, Roman
Müller, Lukas
Jorg, Tobias
description Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.
doi_str_mv 10.3390/diagnostics13233522
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_21a6854e7ecf47aebb67ac26789d85df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775889091</galeid><doaj_id>oai_doaj_org_article_21a6854e7ecf47aebb67ac26789d85df</doaj_id><sourcerecordid>A775889091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</originalsourceid><addsrcrecordid>eNptUstq3DAUFaEhCdN8QaEYuunGifWypGWYpElgICWPtZBlyaPBtqaSTGi_vvJMkj6ItNDlcM65ug8APsHqDGNRnbdOdaOPyekIMcKYInQATlDFaEkI5B_-io_BaYybKh8BMUf0CBxjXtU1q_EJeL7bJje4Xyo5PxbeFmltinuj_RhTmPQOfTApubGLhfWhWPnn8tJHUzz1KajyxnXr8t5E30877ve1T34sl34aZ01xaZLRKeuWj6_uqyl7fQSHVvXRnL68C_D07epxeVOu7q5vlxerUlMIU8lJTWpOK6ZqKhpkiSKcIk0oF9ryhggLERYUQ6KhbnRDreaqbSwmrW6xQngBbve-rVcbuQ1uUOGn9MrJHeBDJ1XIXeyNRFDlVMQwoy1hyjRNzZRGNeOi5bS12evr3msb_I_JxCQHF7XpezUaP0WJRIUE5QjyTP3yH3XjpzDmSiXiQsxjgOwPq1M5vxutzy3Vs6m8YIxyLuaRLcDZO6x8WzO4PChjXcb_EeC9QAcfYzD2rW5YyXl75Dvbk1WfX748NYNp3zSvu4J_A9-7whI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899382517</pqid></control><display><type>article</type><title>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Graafen, Dirk ; Halfmann, Moritz C ; Emrich, Tilman ; Yang, Yang ; Kreuter, Michael ; Düber, Christoph ; Kloeckner, Roman ; Müller, Lukas ; Jorg, Tobias</creator><creatorcontrib>Graafen, Dirk ; Halfmann, Moritz C ; Emrich, Tilman ; Yang, Yang ; Kreuter, Michael ; Düber, Christoph ; Kloeckner, Roman ; Müller, Lukas ; Jorg, Tobias</creatorcontrib><description>Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics13233522</identifier><identifier>PMID: 38066763</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agreements ; CT imaging ; Detectors ; lung ; Lung diseases ; Lungs ; Medical imaging ; Medical research ; Medical screening ; Medicine, Experimental ; Patients ; photon-counting detector CT ; quantum iterative reconstruction ; Radiation ; Sensors ; slice thickness ; Standard deviation ; Tomography ; ultra-high resolution</subject><ispartof>Diagnostics (Basel), 2023-11, Vol.13 (23), p.3522</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</citedby><cites>FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</cites><orcidid>0000-0003-4156-7727 ; 0000-0002-2588-2009 ; 0000-0001-5492-4792 ; 0009-0003-4116-9048 ; 0000-0001-7550-0171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2899382517/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2899382517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38066763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graafen, Dirk</creatorcontrib><creatorcontrib>Halfmann, Moritz C</creatorcontrib><creatorcontrib>Emrich, Tilman</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Kreuter, Michael</creatorcontrib><creatorcontrib>Düber, Christoph</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Müller, Lukas</creatorcontrib><creatorcontrib>Jorg, Tobias</creatorcontrib><title>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.</description><subject>Agreements</subject><subject>CT imaging</subject><subject>Detectors</subject><subject>lung</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medical screening</subject><subject>Medicine, Experimental</subject><subject>Patients</subject><subject>photon-counting detector CT</subject><subject>quantum iterative reconstruction</subject><subject>Radiation</subject><subject>Sensors</subject><subject>slice thickness</subject><subject>Standard deviation</subject><subject>Tomography</subject><subject>ultra-high resolution</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstq3DAUFaEhCdN8QaEYuunGifWypGWYpElgICWPtZBlyaPBtqaSTGi_vvJMkj6ItNDlcM65ug8APsHqDGNRnbdOdaOPyekIMcKYInQATlDFaEkI5B_-io_BaYybKh8BMUf0CBxjXtU1q_EJeL7bJje4Xyo5PxbeFmltinuj_RhTmPQOfTApubGLhfWhWPnn8tJHUzz1KajyxnXr8t5E30877ve1T34sl34aZ01xaZLRKeuWj6_uqyl7fQSHVvXRnL68C_D07epxeVOu7q5vlxerUlMIU8lJTWpOK6ZqKhpkiSKcIk0oF9ryhggLERYUQ6KhbnRDreaqbSwmrW6xQngBbve-rVcbuQ1uUOGn9MrJHeBDJ1XIXeyNRFDlVMQwoy1hyjRNzZRGNeOi5bS12evr3msb_I_JxCQHF7XpezUaP0WJRIUE5QjyTP3yH3XjpzDmSiXiQsxjgOwPq1M5vxutzy3Vs6m8YIxyLuaRLcDZO6x8WzO4PChjXcb_EeC9QAcfYzD2rW5YyXl75Dvbk1WfX748NYNp3zSvu4J_A9-7whI</recordid><startdate>20231124</startdate><enddate>20231124</enddate><creator>Graafen, Dirk</creator><creator>Halfmann, Moritz C</creator><creator>Emrich, Tilman</creator><creator>Yang, Yang</creator><creator>Kreuter, Michael</creator><creator>Düber, Christoph</creator><creator>Kloeckner, Roman</creator><creator>Müller, Lukas</creator><creator>Jorg, Tobias</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4156-7727</orcidid><orcidid>https://orcid.org/0000-0002-2588-2009</orcidid><orcidid>https://orcid.org/0000-0001-5492-4792</orcidid><orcidid>https://orcid.org/0009-0003-4116-9048</orcidid><orcidid>https://orcid.org/0000-0001-7550-0171</orcidid></search><sort><creationdate>20231124</creationdate><title>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</title><author>Graafen, Dirk ; Halfmann, Moritz C ; Emrich, Tilman ; Yang, Yang ; Kreuter, Michael ; Düber, Christoph ; Kloeckner, Roman ; Müller, Lukas ; Jorg, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agreements</topic><topic>CT imaging</topic><topic>Detectors</topic><topic>lung</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medical screening</topic><topic>Medicine, Experimental</topic><topic>Patients</topic><topic>photon-counting detector CT</topic><topic>quantum iterative reconstruction</topic><topic>Radiation</topic><topic>Sensors</topic><topic>slice thickness</topic><topic>Standard deviation</topic><topic>Tomography</topic><topic>ultra-high resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graafen, Dirk</creatorcontrib><creatorcontrib>Halfmann, Moritz C</creatorcontrib><creatorcontrib>Emrich, Tilman</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Kreuter, Michael</creatorcontrib><creatorcontrib>Düber, Christoph</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Müller, Lukas</creatorcontrib><creatorcontrib>Jorg, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graafen, Dirk</au><au>Halfmann, Moritz C</au><au>Emrich, Tilman</au><au>Yang, Yang</au><au>Kreuter, Michael</au><au>Düber, Christoph</au><au>Kloeckner, Roman</au><au>Müller, Lukas</au><au>Jorg, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2023-11-24</date><risdate>2023</risdate><volume>13</volume><issue>23</issue><spage>3522</spage><pages>3522-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38066763</pmid><doi>10.3390/diagnostics13233522</doi><orcidid>https://orcid.org/0000-0003-4156-7727</orcidid><orcidid>https://orcid.org/0000-0002-2588-2009</orcidid><orcidid>https://orcid.org/0000-0001-5492-4792</orcidid><orcidid>https://orcid.org/0009-0003-4116-9048</orcidid><orcidid>https://orcid.org/0000-0001-7550-0171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4418
ispartof Diagnostics (Basel), 2023-11, Vol.13 (23), p.3522
issn 2075-4418
2075-4418
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_21a6854e7ecf47aebb67ac26789d85df
source PubMed (Medline); Publicly Available Content Database
subjects Agreements
CT imaging
Detectors
lung
Lung diseases
Lungs
Medical imaging
Medical research
Medical screening
Medicine, Experimental
Patients
photon-counting detector CT
quantum iterative reconstruction
Radiation
Sensors
slice thickness
Standard deviation
Tomography
ultra-high resolution
title Optimization of the Reconstruction Settings for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lungs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T03%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20Reconstruction%20Settings%20for%20Low-Dose%20Ultra-High-Resolution%20Photon-Counting%20Detector%20CT%20of%20the%20Lungs&rft.jtitle=Diagnostics%20(Basel)&rft.au=Graafen,%20Dirk&rft.date=2023-11-24&rft.volume=13&rft.issue=23&rft.spage=3522&rft.pages=3522-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics13233522&rft_dat=%3Cgale_doaj_%3EA775889091%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-846468507a659b2f4a4852c4589cf8b49f12395314c1cbcb5fc8adbf34dcd3a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899382517&rft_id=info:pmid/38066763&rft_galeid=A775889091&rfr_iscdi=true