Loading…

Evaluation of long-term Northern Hemisphere snow water equivalent products

Nine gridded Northern Hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA...

Full description

Saved in:
Bibliographic Details
Published in:The cryosphere 2020-05, Vol.14 (5), p.1579-1594
Main Authors: Mortimer, Colleen, Mudryk, Lawrence, Derksen, Chris, Luojus, Kari, Brown, Ross, Kelly, Richard, Tedesco, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03
cites cdi_FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03
container_end_page 1594
container_issue 5
container_start_page 1579
container_title The cryosphere
container_volume 14
creator Mortimer, Colleen
Mudryk, Lawrence
Derksen, Chris
Luojus, Kari
Brown, Ross
Kelly, Richard
Tedesco, Marco
description Nine gridded Northern Hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA Global Land Data Assimilation System version 2 – GLDAS-2; the European Centre for Medium-Range Weather Forecasts (ECMWF) interim land surface reanalysis – ERA-Interim/Land and ERA5; the NASA Modern-Era Retrospective Analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2); the Crocus snow model driven by ERA-Interim meteorology – Crocus); (2) passive microwave remote sensing combined with daily surface snow depth observations (ESA GlobSnow v2.0); and (3) stand-alone passive microwave retrievals (NASA AMSR-E SWE versions 1.0 and 2.0) which do not utilize surface snow observations. Evaluation included validation against independent snow course measurements from Russia, Finland, and Canada and product intercomparison through the calculation of spatial and temporal correlations in SWE anomalies. The stand-alone passive microwave SWE products (AMSR-E v1.0 and v2.0 SWE) exhibit low spatial and temporal correlations to other products and RMSE nearly double the best performing product. Constraining passive microwave retrievals with surface observations (GlobSnow) provides performance comparable to the reanalysis-based products; RMSE over Finland and Russia for all but the AMSR-E products is ∼50 mm or less, with the exception of ERA-Interim/Land over Russia. Using a seven-dataset ensemble that excluded the stand-alone passive microwave products reduced the RMSE by 10 mm (20 %) and increased the correlation from 0.67 to 0.78 compared to any individual product. The overall performance of the best multiproduct combinations is still at the margins of acceptable uncertainty for scientific and operational requirements; only through combined and integrated improvements in remote sensing, modeling, and observations will real progress in SWE product development be achieved.
doi_str_mv 10.5194/tc-14-1579-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_21acacb66b4e452984aa98307233ac7d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623985748</galeid><doaj_id>oai_doaj_org_article_21acacb66b4e452984aa98307233ac7d</doaj_id><sourcerecordid>A623985748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03</originalsourceid><addsrcrecordid>eNptUU1vEzEUXCEqUQpnLhxW4sRhW3882-tjVRWaqgKpLWfrrdcOGyV2ansp_HucpiqKhHzw03hm5HnTNB8oORVUw1mxHYWOCqU7Rhh51RxTraEjwOD1y0zlm-ZtzitCJNMEjpvry1-4nrFMMbTRt-sYll1xadN-i6n8dCm0V24z5W0dXZtDfGwfsb637mGeqtKF0m5THGdb8rvmyOM6u_fP90nz48vl_cVVd_P96-Li_KazoPvSaTcMQjKkzqNn1ioFOArKYOBEj4xQSoliIC04J72mRHIPqAfBqXJyIPykWex9x4grs03TBtMfE3EyT0BMS4OpTHbtDKNo0Q5SDuBAMN0Dou559eccrRqr16e9Vw3xMLtczCrOKdTvGwYUBOcK-D_WsiY2U_CxJLR1LdacS8Z1LxT0lXX6H1Y9Y92gjcH5qeIHgs8Hgsop7ndZ4pyzWdzdHnLP9lybYs7J-ZfglJhd_6ZYQ8Hs-je7_qvi414RMKMJJeUnXBDCmFT8L1yIqIs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533743</pqid></control><display><type>article</type><title>Evaluation of long-term Northern Hemisphere snow water equivalent products</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mortimer, Colleen ; Mudryk, Lawrence ; Derksen, Chris ; Luojus, Kari ; Brown, Ross ; Kelly, Richard ; Tedesco, Marco</creator><creatorcontrib>Mortimer, Colleen ; Mudryk, Lawrence ; Derksen, Chris ; Luojus, Kari ; Brown, Ross ; Kelly, Richard ; Tedesco, Marco</creatorcontrib><description>Nine gridded Northern Hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA Global Land Data Assimilation System version 2 – GLDAS-2; the European Centre for Medium-Range Weather Forecasts (ECMWF) interim land surface reanalysis – ERA-Interim/Land and ERA5; the NASA Modern-Era Retrospective Analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2); the Crocus snow model driven by ERA-Interim meteorology – Crocus); (2) passive microwave remote sensing combined with daily surface snow depth observations (ESA GlobSnow v2.0); and (3) stand-alone passive microwave retrievals (NASA AMSR-E SWE versions 1.0 and 2.0) which do not utilize surface snow observations. Evaluation included validation against independent snow course measurements from Russia, Finland, and Canada and product intercomparison through the calculation of spatial and temporal correlations in SWE anomalies. The stand-alone passive microwave SWE products (AMSR-E v1.0 and v2.0 SWE) exhibit low spatial and temporal correlations to other products and RMSE nearly double the best performing product. Constraining passive microwave retrievals with surface observations (GlobSnow) provides performance comparable to the reanalysis-based products; RMSE over Finland and Russia for all but the AMSR-E products is ∼50 mm or less, with the exception of ERA-Interim/Land over Russia. Using a seven-dataset ensemble that excluded the stand-alone passive microwave products reduced the RMSE by 10 mm (20 %) and increased the correlation from 0.67 to 0.78 compared to any individual product. The overall performance of the best multiproduct combinations is still at the margins of acceptable uncertainty for scientific and operational requirements; only through combined and integrated improvements in remote sensing, modeling, and observations will real progress in SWE product development be achieved.</description><identifier>ISSN: 1994-0416</identifier><identifier>ISSN: 1994-0424</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-14-1579-2020</identifier><language>eng</language><publisher>Goddard Space Flight Center: Copernicus / European Geophysical Union</publisher><subject>Anomalies ; Assimilation (Sociology) ; Climate ; Correlation ; Data assimilation ; Data collection ; Datasets ; Equivalence ; Evaluation ; Grain size ; Ground stations ; Intercomparison ; Meteorology ; Meteorology And Climatology ; Northern Hemisphere ; Product development ; Remote sensing ; Satellites ; Snow ; Snow accumulation ; Snow depth ; Snow-water equivalent ; Time series ; Vegetation ; Water ; Weather forecasting</subject><ispartof>The cryosphere, 2020-05, Vol.14 (5), p.1579-1594</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03</citedby><cites>FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03</cites><orcidid>0000-0002-4472-4700 ; 0000-0001-6381-4288 ; 0000-0002-4066-6005 ; 0000-0001-7196-2686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414533743/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414533743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Mortimer, Colleen</creatorcontrib><creatorcontrib>Mudryk, Lawrence</creatorcontrib><creatorcontrib>Derksen, Chris</creatorcontrib><creatorcontrib>Luojus, Kari</creatorcontrib><creatorcontrib>Brown, Ross</creatorcontrib><creatorcontrib>Kelly, Richard</creatorcontrib><creatorcontrib>Tedesco, Marco</creatorcontrib><title>Evaluation of long-term Northern Hemisphere snow water equivalent products</title><title>The cryosphere</title><description>Nine gridded Northern Hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA Global Land Data Assimilation System version 2 – GLDAS-2; the European Centre for Medium-Range Weather Forecasts (ECMWF) interim land surface reanalysis – ERA-Interim/Land and ERA5; the NASA Modern-Era Retrospective Analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2); the Crocus snow model driven by ERA-Interim meteorology – Crocus); (2) passive microwave remote sensing combined with daily surface snow depth observations (ESA GlobSnow v2.0); and (3) stand-alone passive microwave retrievals (NASA AMSR-E SWE versions 1.0 and 2.0) which do not utilize surface snow observations. Evaluation included validation against independent snow course measurements from Russia, Finland, and Canada and product intercomparison through the calculation of spatial and temporal correlations in SWE anomalies. The stand-alone passive microwave SWE products (AMSR-E v1.0 and v2.0 SWE) exhibit low spatial and temporal correlations to other products and RMSE nearly double the best performing product. Constraining passive microwave retrievals with surface observations (GlobSnow) provides performance comparable to the reanalysis-based products; RMSE over Finland and Russia for all but the AMSR-E products is ∼50 mm or less, with the exception of ERA-Interim/Land over Russia. Using a seven-dataset ensemble that excluded the stand-alone passive microwave products reduced the RMSE by 10 mm (20 %) and increased the correlation from 0.67 to 0.78 compared to any individual product. The overall performance of the best multiproduct combinations is still at the margins of acceptable uncertainty for scientific and operational requirements; only through combined and integrated improvements in remote sensing, modeling, and observations will real progress in SWE product development be achieved.</description><subject>Anomalies</subject><subject>Assimilation (Sociology)</subject><subject>Climate</subject><subject>Correlation</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Equivalence</subject><subject>Evaluation</subject><subject>Grain size</subject><subject>Ground stations</subject><subject>Intercomparison</subject><subject>Meteorology</subject><subject>Meteorology And Climatology</subject><subject>Northern Hemisphere</subject><subject>Product development</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Snow</subject><subject>Snow accumulation</subject><subject>Snow depth</subject><subject>Snow-water equivalent</subject><subject>Time series</subject><subject>Vegetation</subject><subject>Water</subject><subject>Weather forecasting</subject><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1vEzEUXCEqUQpnLhxW4sRhW3882-tjVRWaqgKpLWfrrdcOGyV2ansp_HucpiqKhHzw03hm5HnTNB8oORVUw1mxHYWOCqU7Rhh51RxTraEjwOD1y0zlm-ZtzitCJNMEjpvry1-4nrFMMbTRt-sYll1xadN-i6n8dCm0V24z5W0dXZtDfGwfsb637mGeqtKF0m5THGdb8rvmyOM6u_fP90nz48vl_cVVd_P96-Li_KazoPvSaTcMQjKkzqNn1ioFOArKYOBEj4xQSoliIC04J72mRHIPqAfBqXJyIPykWex9x4grs03TBtMfE3EyT0BMS4OpTHbtDKNo0Q5SDuBAMN0Dou559eccrRqr16e9Vw3xMLtczCrOKdTvGwYUBOcK-D_WsiY2U_CxJLR1LdacS8Z1LxT0lXX6H1Y9Y92gjcH5qeIHgs8Hgsop7ndZ4pyzWdzdHnLP9lybYs7J-ZfglJhd_6ZYQ8Hs-je7_qvi414RMKMJJeUnXBDCmFT8L1yIqIs</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Mortimer, Colleen</creator><creator>Mudryk, Lawrence</creator><creator>Derksen, Chris</creator><creator>Luojus, Kari</creator><creator>Brown, Ross</creator><creator>Kelly, Richard</creator><creator>Tedesco, Marco</creator><general>Copernicus / European Geophysical Union</general><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4472-4700</orcidid><orcidid>https://orcid.org/0000-0001-6381-4288</orcidid><orcidid>https://orcid.org/0000-0002-4066-6005</orcidid><orcidid>https://orcid.org/0000-0001-7196-2686</orcidid></search><sort><creationdate>20200515</creationdate><title>Evaluation of long-term Northern Hemisphere snow water equivalent products</title><author>Mortimer, Colleen ; Mudryk, Lawrence ; Derksen, Chris ; Luojus, Kari ; Brown, Ross ; Kelly, Richard ; Tedesco, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Assimilation (Sociology)</topic><topic>Climate</topic><topic>Correlation</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Equivalence</topic><topic>Evaluation</topic><topic>Grain size</topic><topic>Ground stations</topic><topic>Intercomparison</topic><topic>Meteorology</topic><topic>Meteorology And Climatology</topic><topic>Northern Hemisphere</topic><topic>Product development</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Snow</topic><topic>Snow accumulation</topic><topic>Snow depth</topic><topic>Snow-water equivalent</topic><topic>Time series</topic><topic>Vegetation</topic><topic>Water</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Mortimer, Colleen</creatorcontrib><creatorcontrib>Mudryk, Lawrence</creatorcontrib><creatorcontrib>Derksen, Chris</creatorcontrib><creatorcontrib>Luojus, Kari</creatorcontrib><creatorcontrib>Brown, Ross</creatorcontrib><creatorcontrib>Kelly, Richard</creatorcontrib><creatorcontrib>Tedesco, Marco</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortimer, Colleen</au><au>Mudryk, Lawrence</au><au>Derksen, Chris</au><au>Luojus, Kari</au><au>Brown, Ross</au><au>Kelly, Richard</au><au>Tedesco, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of long-term Northern Hemisphere snow water equivalent products</atitle><jtitle>The cryosphere</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>1579</spage><epage>1594</epage><pages>1579-1594</pages><issn>1994-0416</issn><issn>1994-0424</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>Nine gridded Northern Hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA Global Land Data Assimilation System version 2 – GLDAS-2; the European Centre for Medium-Range Weather Forecasts (ECMWF) interim land surface reanalysis – ERA-Interim/Land and ERA5; the NASA Modern-Era Retrospective Analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2); the Crocus snow model driven by ERA-Interim meteorology – Crocus); (2) passive microwave remote sensing combined with daily surface snow depth observations (ESA GlobSnow v2.0); and (3) stand-alone passive microwave retrievals (NASA AMSR-E SWE versions 1.0 and 2.0) which do not utilize surface snow observations. Evaluation included validation against independent snow course measurements from Russia, Finland, and Canada and product intercomparison through the calculation of spatial and temporal correlations in SWE anomalies. The stand-alone passive microwave SWE products (AMSR-E v1.0 and v2.0 SWE) exhibit low spatial and temporal correlations to other products and RMSE nearly double the best performing product. Constraining passive microwave retrievals with surface observations (GlobSnow) provides performance comparable to the reanalysis-based products; RMSE over Finland and Russia for all but the AMSR-E products is ∼50 mm or less, with the exception of ERA-Interim/Land over Russia. Using a seven-dataset ensemble that excluded the stand-alone passive microwave products reduced the RMSE by 10 mm (20 %) and increased the correlation from 0.67 to 0.78 compared to any individual product. The overall performance of the best multiproduct combinations is still at the margins of acceptable uncertainty for scientific and operational requirements; only through combined and integrated improvements in remote sensing, modeling, and observations will real progress in SWE product development be achieved.</abstract><cop>Goddard Space Flight Center</cop><pub>Copernicus / European Geophysical Union</pub><doi>10.5194/tc-14-1579-2020</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4472-4700</orcidid><orcidid>https://orcid.org/0000-0001-6381-4288</orcidid><orcidid>https://orcid.org/0000-0002-4066-6005</orcidid><orcidid>https://orcid.org/0000-0001-7196-2686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-0416
ispartof The cryosphere, 2020-05, Vol.14 (5), p.1579-1594
issn 1994-0416
1994-0424
1994-0424
1994-0416
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_21acacb66b4e452984aa98307233ac7d
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Anomalies
Assimilation (Sociology)
Climate
Correlation
Data assimilation
Data collection
Datasets
Equivalence
Evaluation
Grain size
Ground stations
Intercomparison
Meteorology
Meteorology And Climatology
Northern Hemisphere
Product development
Remote sensing
Satellites
Snow
Snow accumulation
Snow depth
Snow-water equivalent
Time series
Vegetation
Water
Weather forecasting
title Evaluation of long-term Northern Hemisphere snow water equivalent products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20long-term%20Northern%20Hemisphere%20snow%20water%20equivalent%20products&rft.jtitle=The%20cryosphere&rft.au=Mortimer,%20Colleen&rft.date=2020-05-15&rft.volume=14&rft.issue=5&rft.spage=1579&rft.epage=1594&rft.pages=1579-1594&rft.issn=1994-0416&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-14-1579-2020&rft_dat=%3Cgale_doaj_%3EA623985748%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-9ebb562a1efaf2cc774ad5124b309d2011107246c4ee6f91063f4a9b5317e6b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414533743&rft_id=info:pmid/&rft_galeid=A623985748&rfr_iscdi=true