Loading…

Hierarchical multi-label classification based on LSTM network and Bayesian decision theory for LncRNA function prediction

Growing evidence shows that long noncoding RNAs (lncRNAs) play an important role in cellular biological processes at multiple levels, such as gene imprinting, immune response, and genetic regulation, and are closely related to diseases because of their complex and precise control. However, most func...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-04, Vol.12 (1), p.5819-5819, Article 5819
Main Authors: Feng, Shou, Li, Huiying, Qiao, Jiaqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Growing evidence shows that long noncoding RNAs (lncRNAs) play an important role in cellular biological processes at multiple levels, such as gene imprinting, immune response, and genetic regulation, and are closely related to diseases because of their complex and precise control. However, most functions of lncRNAs remain undiscovered. Current computational methods for exploring lncRNA functions can avoid high-throughput experiments, but they usually focus on the construction of similarity networks and ignore the certain directed acyclic graph (DAG) formed by gene ontology annotations. In this paper, we view the function annotation work as a hierarchical multilabel classification problem and design a method HLSTMBD for classification with DAG-structured labels. With the help of a mathematical model based on Bayesian decision theory, the HLSTMBD algorithm is implemented with the long-short term memory network and a hierarchical constraint method DAGLabel. Compared with other state-of-the-art algorithms, the results on GOA-lncRNA datasets show that the proposed method can efficiently and accurately complete the label prediction work.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-09672-1