Loading…

In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements

Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking ( f -Fu) and thiophene‒benzene stacking ( f...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-10, Vol.14 (1), p.6250-6250, Article 6250
Main Authors: Li, Jinshi, Shen, Pingchuan, Zhuang, Zeyan, Wu, Junqi, Tang, Ben Zhong, Zhao, Zujin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3
cites cdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3
container_end_page 6250
container_issue 1
container_start_page 6250
container_title Nature communications
container_volume 14
creator Li, Jinshi
Shen, Pingchuan
Zhuang, Zeyan
Wu, Junqi
Tang, Ben Zhong
Zhao, Zujin
description Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking ( f -Fu) and thiophene‒benzene stacking ( f -Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions. f -Fu exhibits volatile turn-on feature while f -Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching. f -Fu possesses higher switching probability and faster responsive time, while f -Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for f -Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator. Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.
doi_str_mv 10.1038/s41467-023-42028-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_21d5baca213f40549703a6ce496f8caa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_21d5baca213f40549703a6ce496f8caa</doaj_id><sourcerecordid>2873640392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</originalsourceid><addsrcrecordid>eNp9kktr3DAUhU1paUKaP9CVoZtu1OpteVVK6GMg0E27VmX5yuNBllzJHsi_j2YckqaLCoEu0jkfV9KpqrcEfyCYqY-ZEy4bhClDnGKqkHhRXVLMCSINZS__qi-q65wPuAzWEsX56-qCNQrTthWX1e9dQHlc1ho82CVFlCDPMeTxCPWyT3Ed9ijPxkJt4zr7MQw1BNOdCxd9byZIuTa5PkZvltFDPcEU092JN0FY8pvqlTM-w_XDelX9-vrl5813dPvj2-7m8y2ygqgFKQYMaC-J7XgPgghnG-tAyo63TPTYcSE62SvqSCM7a6lTFkAJ6jqJewPsqtpt3D6ag57TOJl0p6MZ9XkjpkGbtIzWg6akF52xhhLmOBa8bTAz0gJvZaEaU1ifNta8dhP0ttwjGf8M-vwkjHs9xKMmWAhVZiG8fyCk-GeFvOhpzBa8NwHimjVVDadCqbYp0nf_SA9xTaG81UnFJC_fRouKbiqbYs4J3GM3BOtTIPQWCF0Coc-B0KKY2GbKRRwGSE_o_7juAZADua0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873640392</pqid></control><display><type>article</type><title>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Jinshi ; Shen, Pingchuan ; Zhuang, Zeyan ; Wu, Junqi ; Tang, Ben Zhong ; Zhao, Zujin</creator><creatorcontrib>Li, Jinshi ; Shen, Pingchuan ; Zhuang, Zeyan ; Wu, Junqi ; Tang, Ben Zhong ; Zhao, Zujin</creatorcontrib><description>Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking ( f -Fu) and thiophene‒benzene stacking ( f -Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions. f -Fu exhibits volatile turn-on feature while f -Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching. f -Fu possesses higher switching probability and faster responsive time, while f -Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for f -Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator. Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42028-5</identifier><identifier>PMID: 37802995</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 639/766/1130/2798 ; 639/925/357/339 ; Benzene ; Channel gating ; Computer memory ; Electrical junctions ; Electrochemistry ; Electronics ; Humanities and Social Sciences ; Hydrocarbons ; Interference ; Memristors ; Molecular electronics ; multidisciplinary ; Random numbers ; Science ; Science (multidisciplinary) ; Stacking ; Stochasticity ; Switching ; Synapses ; Voltage</subject><ispartof>Nature communications, 2023-10, Vol.14 (1), p.6250-6250, Article 6250</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</citedby><cites>FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</cites><orcidid>0000-0002-0293-964X ; 0000-0002-0618-6024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2873640392/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2873640392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Li, Jinshi</creatorcontrib><creatorcontrib>Shen, Pingchuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Wu, Junqi</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Zhao, Zujin</creatorcontrib><title>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking ( f -Fu) and thiophene‒benzene stacking ( f -Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions. f -Fu exhibits volatile turn-on feature while f -Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching. f -Fu possesses higher switching probability and faster responsive time, while f -Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for f -Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator. Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.</description><subject>147/143</subject><subject>639/766/1130/2798</subject><subject>639/925/357/339</subject><subject>Benzene</subject><subject>Channel gating</subject><subject>Computer memory</subject><subject>Electrical junctions</subject><subject>Electrochemistry</subject><subject>Electronics</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Interference</subject><subject>Memristors</subject><subject>Molecular electronics</subject><subject>multidisciplinary</subject><subject>Random numbers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stacking</subject><subject>Stochasticity</subject><subject>Switching</subject><subject>Synapses</subject><subject>Voltage</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktr3DAUhU1paUKaP9CVoZtu1OpteVVK6GMg0E27VmX5yuNBllzJHsi_j2YckqaLCoEu0jkfV9KpqrcEfyCYqY-ZEy4bhClDnGKqkHhRXVLMCSINZS__qi-q65wPuAzWEsX56-qCNQrTthWX1e9dQHlc1ho82CVFlCDPMeTxCPWyT3Ed9ijPxkJt4zr7MQw1BNOdCxd9byZIuTa5PkZvltFDPcEU092JN0FY8pvqlTM-w_XDelX9-vrl5813dPvj2-7m8y2ygqgFKQYMaC-J7XgPgghnG-tAyo63TPTYcSE62SvqSCM7a6lTFkAJ6jqJewPsqtpt3D6ag57TOJl0p6MZ9XkjpkGbtIzWg6akF52xhhLmOBa8bTAz0gJvZaEaU1ifNta8dhP0ttwjGf8M-vwkjHs9xKMmWAhVZiG8fyCk-GeFvOhpzBa8NwHimjVVDadCqbYp0nf_SA9xTaG81UnFJC_fRouKbiqbYs4J3GM3BOtTIPQWCF0Coc-B0KKY2GbKRRwGSE_o_7juAZADua0</recordid><startdate>20231006</startdate><enddate>20231006</enddate><creator>Li, Jinshi</creator><creator>Shen, Pingchuan</creator><creator>Zhuang, Zeyan</creator><creator>Wu, Junqi</creator><creator>Tang, Ben Zhong</creator><creator>Zhao, Zujin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0002-0618-6024</orcidid></search><sort><creationdate>20231006</creationdate><title>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</title><author>Li, Jinshi ; Shen, Pingchuan ; Zhuang, Zeyan ; Wu, Junqi ; Tang, Ben Zhong ; Zhao, Zujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>147/143</topic><topic>639/766/1130/2798</topic><topic>639/925/357/339</topic><topic>Benzene</topic><topic>Channel gating</topic><topic>Computer memory</topic><topic>Electrical junctions</topic><topic>Electrochemistry</topic><topic>Electronics</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Interference</topic><topic>Memristors</topic><topic>Molecular electronics</topic><topic>multidisciplinary</topic><topic>Random numbers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stacking</topic><topic>Stochasticity</topic><topic>Switching</topic><topic>Synapses</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinshi</creatorcontrib><creatorcontrib>Shen, Pingchuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Wu, Junqi</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Zhao, Zujin</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinshi</au><au>Shen, Pingchuan</au><au>Zhuang, Zeyan</au><au>Wu, Junqi</au><au>Tang, Ben Zhong</au><au>Zhao, Zujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-10-06</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>6250</spage><epage>6250</epage><pages>6250-6250</pages><artnum>6250</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking ( f -Fu) and thiophene‒benzene stacking ( f -Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions. f -Fu exhibits volatile turn-on feature while f -Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching. f -Fu possesses higher switching probability and faster responsive time, while f -Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for f -Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator. Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37802995</pmid><doi>10.1038/s41467-023-42028-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0002-0618-6024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-10, Vol.14 (1), p.6250-6250, Article 6250
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_21d5baca213f40549703a6ce496f8caa
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/143
639/766/1130/2798
639/925/357/339
Benzene
Channel gating
Computer memory
Electrical junctions
Electrochemistry
Electronics
Humanities and Social Sciences
Hydrocarbons
Interference
Memristors
Molecular electronics
multidisciplinary
Random numbers
Science
Science (multidisciplinary)
Stacking
Stochasticity
Switching
Synapses
Voltage
title In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20electro-responsive%20through-space%20coupling%20enabling%20foldamers%20as%20volatile%20memory%20elements&rft.jtitle=Nature%20communications&rft.au=Li,%20Jinshi&rft.date=2023-10-06&rft.volume=14&rft.issue=1&rft.spage=6250&rft.epage=6250&rft.pages=6250-6250&rft.artnum=6250&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42028-5&rft_dat=%3Cproquest_doaj_%3E2873640392%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873640392&rft_id=info:pmid/37802995&rfr_iscdi=true