Loading…
In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements
Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking ( f -Fu) and thiophene‒benzene stacking ( f...
Saved in:
Published in: | Nature communications 2023-10, Vol.14 (1), p.6250-6250, Article 6250 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3 |
container_end_page | 6250 |
container_issue | 1 |
container_start_page | 6250 |
container_title | Nature communications |
container_volume | 14 |
creator | Li, Jinshi Shen, Pingchuan Zhuang, Zeyan Wu, Junqi Tang, Ben Zhong Zhao, Zujin |
description | Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking (
f
-Fu) and thiophene‒benzene stacking (
f
-Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions.
f
-Fu exhibits volatile turn-on feature while
f
-Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching.
f
-Fu possesses higher switching probability and faster responsive time, while
f
-Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for
f
-Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator.
Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application. |
doi_str_mv | 10.1038/s41467-023-42028-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_21d5baca213f40549703a6ce496f8caa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_21d5baca213f40549703a6ce496f8caa</doaj_id><sourcerecordid>2873640392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</originalsourceid><addsrcrecordid>eNp9kktr3DAUhU1paUKaP9CVoZtu1OpteVVK6GMg0E27VmX5yuNBllzJHsi_j2YckqaLCoEu0jkfV9KpqrcEfyCYqY-ZEy4bhClDnGKqkHhRXVLMCSINZS__qi-q65wPuAzWEsX56-qCNQrTthWX1e9dQHlc1ho82CVFlCDPMeTxCPWyT3Ed9ijPxkJt4zr7MQw1BNOdCxd9byZIuTa5PkZvltFDPcEU092JN0FY8pvqlTM-w_XDelX9-vrl5813dPvj2-7m8y2ygqgFKQYMaC-J7XgPgghnG-tAyo63TPTYcSE62SvqSCM7a6lTFkAJ6jqJewPsqtpt3D6ag57TOJl0p6MZ9XkjpkGbtIzWg6akF52xhhLmOBa8bTAz0gJvZaEaU1ifNta8dhP0ttwjGf8M-vwkjHs9xKMmWAhVZiG8fyCk-GeFvOhpzBa8NwHimjVVDadCqbYp0nf_SA9xTaG81UnFJC_fRouKbiqbYs4J3GM3BOtTIPQWCF0Coc-B0KKY2GbKRRwGSE_o_7juAZADua0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873640392</pqid></control><display><type>article</type><title>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Jinshi ; Shen, Pingchuan ; Zhuang, Zeyan ; Wu, Junqi ; Tang, Ben Zhong ; Zhao, Zujin</creator><creatorcontrib>Li, Jinshi ; Shen, Pingchuan ; Zhuang, Zeyan ; Wu, Junqi ; Tang, Ben Zhong ; Zhao, Zujin</creatorcontrib><description>Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking (
f
-Fu) and thiophene‒benzene stacking (
f
-Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions.
f
-Fu exhibits volatile turn-on feature while
f
-Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching.
f
-Fu possesses higher switching probability and faster responsive time, while
f
-Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for
f
-Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator.
Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-42028-5</identifier><identifier>PMID: 37802995</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 639/766/1130/2798 ; 639/925/357/339 ; Benzene ; Channel gating ; Computer memory ; Electrical junctions ; Electrochemistry ; Electronics ; Humanities and Social Sciences ; Hydrocarbons ; Interference ; Memristors ; Molecular electronics ; multidisciplinary ; Random numbers ; Science ; Science (multidisciplinary) ; Stacking ; Stochasticity ; Switching ; Synapses ; Voltage</subject><ispartof>Nature communications, 2023-10, Vol.14 (1), p.6250-6250, Article 6250</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</citedby><cites>FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</cites><orcidid>0000-0002-0293-964X ; 0000-0002-0618-6024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2873640392/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2873640392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Li, Jinshi</creatorcontrib><creatorcontrib>Shen, Pingchuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Wu, Junqi</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Zhao, Zujin</creatorcontrib><title>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking (
f
-Fu) and thiophene‒benzene stacking (
f
-Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions.
f
-Fu exhibits volatile turn-on feature while
f
-Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching.
f
-Fu possesses higher switching probability and faster responsive time, while
f
-Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for
f
-Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator.
Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.</description><subject>147/143</subject><subject>639/766/1130/2798</subject><subject>639/925/357/339</subject><subject>Benzene</subject><subject>Channel gating</subject><subject>Computer memory</subject><subject>Electrical junctions</subject><subject>Electrochemistry</subject><subject>Electronics</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Interference</subject><subject>Memristors</subject><subject>Molecular electronics</subject><subject>multidisciplinary</subject><subject>Random numbers</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stacking</subject><subject>Stochasticity</subject><subject>Switching</subject><subject>Synapses</subject><subject>Voltage</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktr3DAUhU1paUKaP9CVoZtu1OpteVVK6GMg0E27VmX5yuNBllzJHsi_j2YckqaLCoEu0jkfV9KpqrcEfyCYqY-ZEy4bhClDnGKqkHhRXVLMCSINZS__qi-q65wPuAzWEsX56-qCNQrTthWX1e9dQHlc1ho82CVFlCDPMeTxCPWyT3Ed9ijPxkJt4zr7MQw1BNOdCxd9byZIuTa5PkZvltFDPcEU092JN0FY8pvqlTM-w_XDelX9-vrl5813dPvj2-7m8y2ygqgFKQYMaC-J7XgPgghnG-tAyo63TPTYcSE62SvqSCM7a6lTFkAJ6jqJewPsqtpt3D6ag57TOJl0p6MZ9XkjpkGbtIzWg6akF52xhhLmOBa8bTAz0gJvZaEaU1ifNta8dhP0ttwjGf8M-vwkjHs9xKMmWAhVZiG8fyCk-GeFvOhpzBa8NwHimjVVDadCqbYp0nf_SA9xTaG81UnFJC_fRouKbiqbYs4J3GM3BOtTIPQWCF0Coc-B0KKY2GbKRRwGSE_o_7juAZADua0</recordid><startdate>20231006</startdate><enddate>20231006</enddate><creator>Li, Jinshi</creator><creator>Shen, Pingchuan</creator><creator>Zhuang, Zeyan</creator><creator>Wu, Junqi</creator><creator>Tang, Ben Zhong</creator><creator>Zhao, Zujin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0002-0618-6024</orcidid></search><sort><creationdate>20231006</creationdate><title>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</title><author>Li, Jinshi ; Shen, Pingchuan ; Zhuang, Zeyan ; Wu, Junqi ; Tang, Ben Zhong ; Zhao, Zujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>147/143</topic><topic>639/766/1130/2798</topic><topic>639/925/357/339</topic><topic>Benzene</topic><topic>Channel gating</topic><topic>Computer memory</topic><topic>Electrical junctions</topic><topic>Electrochemistry</topic><topic>Electronics</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Interference</topic><topic>Memristors</topic><topic>Molecular electronics</topic><topic>multidisciplinary</topic><topic>Random numbers</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stacking</topic><topic>Stochasticity</topic><topic>Switching</topic><topic>Synapses</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinshi</creatorcontrib><creatorcontrib>Shen, Pingchuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Wu, Junqi</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><creatorcontrib>Zhao, Zujin</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinshi</au><au>Shen, Pingchuan</au><au>Zhuang, Zeyan</au><au>Wu, Junqi</au><au>Tang, Ben Zhong</au><au>Zhao, Zujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-10-06</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>6250</spage><epage>6250</epage><pages>6250-6250</pages><artnum>6250</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Voltage-gated processing units are fundamental components for non-von Neumann architectures like memristor and electric synapses, on which nanoscale molecular electronics have possessed great potentials. Here, tailored foldamers with furan‒benzene stacking (
f
-Fu) and thiophene‒benzene stacking (
f
-Th) are designed to decipher electro-responsive through-space interaction, which achieve volatile memory behaviors via quantum interference switching in single-molecule junctions.
f
-Fu exhibits volatile turn-on feature while
f
-Th performs stochastic turn-off feature with low voltages as 0.2 V. The weakened orbital through-space mixing induced by electro-polarization dominates stacking malposition and quantum interference switching.
f
-Fu possesses higher switching probability and faster responsive time, while
f
-Th suffers incomplete switching and longer responsive time. High switching ratios of up to 91 for
f
-Fu is realized by electrochemical gating. These findings provide evidence and interpretation of the electro-responsiveness of non-covalent interaction at single-molecule level and offer design strategies of molecular non-von Neumann architectures like true random number generator.
Molecular electronics holds promise for building memristor at nanoscales for in-memory computing. Li et al. design tailored foldamers with furan-benzene and thiophene-benzene stacking to achieve voltage triggered quantum interference switching for potential random number generator application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37802995</pmid><doi>10.1038/s41467-023-42028-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0002-0618-6024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-10, Vol.14 (1), p.6250-6250, Article 6250 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_21d5baca213f40549703a6ce496f8caa |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/143 639/766/1130/2798 639/925/357/339 Benzene Channel gating Computer memory Electrical junctions Electrochemistry Electronics Humanities and Social Sciences Hydrocarbons Interference Memristors Molecular electronics multidisciplinary Random numbers Science Science (multidisciplinary) Stacking Stochasticity Switching Synapses Voltage |
title | In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20electro-responsive%20through-space%20coupling%20enabling%20foldamers%20as%20volatile%20memory%20elements&rft.jtitle=Nature%20communications&rft.au=Li,%20Jinshi&rft.date=2023-10-06&rft.volume=14&rft.issue=1&rft.spage=6250&rft.epage=6250&rft.pages=6250-6250&rft.artnum=6250&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-42028-5&rft_dat=%3Cproquest_doaj_%3E2873640392%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-83e3e2d61cb4de515fc7cfe66b4935d0f455b6d82f176bcc2f8cee852fb60dae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873640392&rft_id=info:pmid/37802995&rfr_iscdi=true |