Loading…

An Ultra-Low Power Parity Generator Circuit Based on QCA Technology

Quantum-dot cellular automata (QCA) technology is one of the emerging technologies that can be used for replacing CMOS technology. It has attracted significant attention in the recent years due to its extremely low power dissipation, high operating frequency, and a small size. In this study, we demo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrical and computer engineering 2019, Vol.2019 (2019), p.1-8
Main Authors: Mtibaa, Abdellatif, Ouni, Bouraoui, Touil, Lamjed, Gassoumi, Ismail
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum-dot cellular automata (QCA) technology is one of the emerging technologies that can be used for replacing CMOS technology. It has attracted significant attention in the recent years due to its extremely low power dissipation, high operating frequency, and a small size. In this study, we demonstrate an n-bit parity generator circuit by utilizing QCA technology. Here, a novel XOR gate is used in the synthesis of the proposed circuit. The proposed gate is based on electrostatic interactions between cells to perform the desired function. The comparison results demonstrate that the designed QCA circuits have advantages compared to other circuits in terms of cell count, area, delay, and power consumption. The QCADesigner software, as widely used QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation has been computed for the proposed circuit using accurate QCAPro power estimator tool.
ISSN:2090-0147
2090-0155
DOI:10.1155/2019/1675169