Loading…

A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage

Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the hete...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2017-08, Vol.20 (6), p.1422-1434
Main Authors: Niopek, Katharina, Üstünel, Bilgen Ekim, Seitz, Susanne, Sakurai, Minako, Zota, Annika, Mattijssen, Frits, Wang, Xiaoyue, Sijmonsma, Tjeerd, Feuchter, Yvonne, Gail, Anna M., Leuchs, Barbara, Niopek, Dominik, Staufer, Oskar, Brune, Maik, Sticht, Carsten, Gretz, Norbert, Müller-Decker, Karin, Hammes, Hans-Peter, Nawroth, Peter, Fleming, Thomas, Conkright, Michael D., Blüher, Matthias, Zeigerer, Anja, Herzig, Stephan, Berriel Diaz, Mauricio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3
cites cdi_FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3
container_end_page 1434
container_issue 6
container_start_page 1422
container_title Cell reports (Cambridge)
container_volume 20
creator Niopek, Katharina
Üstünel, Bilgen Ekim
Seitz, Susanne
Sakurai, Minako
Zota, Annika
Mattijssen, Frits
Wang, Xiaoyue
Sijmonsma, Tjeerd
Feuchter, Yvonne
Gail, Anna M.
Leuchs, Barbara
Niopek, Dominik
Staufer, Oskar
Brune, Maik
Sticht, Carsten
Gretz, Norbert
Müller-Decker, Karin
Hammes, Hans-Peter
Nawroth, Peter
Fleming, Thomas
Conkright, Michael D.
Blüher, Matthias
Zeigerer, Anja
Herzig, Stephan
Berriel Diaz, Mauricio
description Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and β complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) β1, which was identified as a direct hepatic GAbp target. Impairment of AMPKβ1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKβ1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications. [Display omitted] •TNF-α-induced ROS formation diminishes hepatic GAbp transcription factor function•Impaired hepatic GAbp function results in transcriptional inactivation of AMPK•AMPK deficiency increases hepatic cholesterol secretion•Hypercholesterolemia upon GAbp inhibition induces atherosclerotic lesion formation Inflammatory signaling contributes to metabolic disease progression in obesity and diabetes. Niopek et al. identify the transcription factor GAbp to be inactivated in the liver by TNF-α-dependent oxidative stress. Inactivation of GAbp increases cholesterol levels through impaired hepatic AMPK function, contributing to macro-vascular lesion formation as a diabetic long-term complication.
doi_str_mv 10.1016/j.celrep.2017.07.023
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2202dbc7845d40ae91de1eae8c20361a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124717309890</els_id><doaj_id>oai_doaj_org_article_2202dbc7845d40ae91de1eae8c20361a</doaj_id><sourcerecordid>1927836394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3</originalsourceid><addsrcrecordid>eNp9UUtv1DAQthCIVqX_ACEfuWTx28kFKSrQrlgEqMDVmjiTlZe8sLOI_fe4pFScsEayNfoenvkIec7ZhjNuXh02HvuI80Ywbjcsl5CPyLkQnBdcKPv4n_cZuUzpwPIxjPNKPSVnorSVFEafk881vcEZluDpdd3MRf3h03ta_wqJ7sL4PdHt2PUwDLBM8URvw36EPox7ukz09pQWHDLvGyR_7CHSNzDAHp-RJx30CS_v7wvy9d3bL1c3xe7j9faq3hVeWbUUUiloZaVawTTrmFLMo_JKGtPoimtrwRj0pS51p9EwXWLuVsz4ykglbCMvyHbVbSc4uDmGAeLJTRDcn8YU9w5inqtHJwQTbeNtqXSrGGSlFjkCll4waThkrZer1hynH0dMixtCyhvuYcTpmByvhC2lyd_NULVCfZxSitg9WHPm7rJxB7dm4-6ycSyXkJn24t7h2AzYPpD-JpEBr1cA5p39DBhd8gFHj22I6Jc8VPi_w29XL54E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927836394</pqid></control><display><type>article</type><title>A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Niopek, Katharina ; Üstünel, Bilgen Ekim ; Seitz, Susanne ; Sakurai, Minako ; Zota, Annika ; Mattijssen, Frits ; Wang, Xiaoyue ; Sijmonsma, Tjeerd ; Feuchter, Yvonne ; Gail, Anna M. ; Leuchs, Barbara ; Niopek, Dominik ; Staufer, Oskar ; Brune, Maik ; Sticht, Carsten ; Gretz, Norbert ; Müller-Decker, Karin ; Hammes, Hans-Peter ; Nawroth, Peter ; Fleming, Thomas ; Conkright, Michael D. ; Blüher, Matthias ; Zeigerer, Anja ; Herzig, Stephan ; Berriel Diaz, Mauricio</creator><creatorcontrib>Niopek, Katharina ; Üstünel, Bilgen Ekim ; Seitz, Susanne ; Sakurai, Minako ; Zota, Annika ; Mattijssen, Frits ; Wang, Xiaoyue ; Sijmonsma, Tjeerd ; Feuchter, Yvonne ; Gail, Anna M. ; Leuchs, Barbara ; Niopek, Dominik ; Staufer, Oskar ; Brune, Maik ; Sticht, Carsten ; Gretz, Norbert ; Müller-Decker, Karin ; Hammes, Hans-Peter ; Nawroth, Peter ; Fleming, Thomas ; Conkright, Michael D. ; Blüher, Matthias ; Zeigerer, Anja ; Herzig, Stephan ; Berriel Diaz, Mauricio</creatorcontrib><description>Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and β complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) β1, which was identified as a direct hepatic GAbp target. Impairment of AMPKβ1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKβ1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications. [Display omitted] •TNF-α-induced ROS formation diminishes hepatic GAbp transcription factor function•Impaired hepatic GAbp function results in transcriptional inactivation of AMPK•AMPK deficiency increases hepatic cholesterol secretion•Hypercholesterolemia upon GAbp inhibition induces atherosclerotic lesion formation Inflammatory signaling contributes to metabolic disease progression in obesity and diabetes. Niopek et al. identify the transcription factor GAbp to be inactivated in the liver by TNF-α-dependent oxidative stress. Inactivation of GAbp increases cholesterol levels through impaired hepatic AMPK function, contributing to macro-vascular lesion formation as a diabetic long-term complication.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2017.07.023</identifier><identifier>PMID: 28793265</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMPK ; Animals ; atherogenesis ; Atherosclerosis - etiology ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Cell Line ; Cells, Cultured ; Cholesterol - metabolism ; GA-Binding Protein Transcription Factor - chemistry ; GA-Binding Protein Transcription Factor - metabolism ; GAbp ; Hepatocytes - metabolism ; Hypercholesterolemia - complications ; Hypercholesterolemia - metabolism ; liver ; Male ; Mice ; Mice, Inbred C57BL ; Protein Kinases - metabolism ; Protein Multimerization ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Reactive Oxygen Species - metabolism ; Signal Transduction ; TNF-α ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Cell reports (Cambridge), 2017-08, Vol.20 (6), p.1422-1434</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3</citedby><cites>FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28793265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niopek, Katharina</creatorcontrib><creatorcontrib>Üstünel, Bilgen Ekim</creatorcontrib><creatorcontrib>Seitz, Susanne</creatorcontrib><creatorcontrib>Sakurai, Minako</creatorcontrib><creatorcontrib>Zota, Annika</creatorcontrib><creatorcontrib>Mattijssen, Frits</creatorcontrib><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Sijmonsma, Tjeerd</creatorcontrib><creatorcontrib>Feuchter, Yvonne</creatorcontrib><creatorcontrib>Gail, Anna M.</creatorcontrib><creatorcontrib>Leuchs, Barbara</creatorcontrib><creatorcontrib>Niopek, Dominik</creatorcontrib><creatorcontrib>Staufer, Oskar</creatorcontrib><creatorcontrib>Brune, Maik</creatorcontrib><creatorcontrib>Sticht, Carsten</creatorcontrib><creatorcontrib>Gretz, Norbert</creatorcontrib><creatorcontrib>Müller-Decker, Karin</creatorcontrib><creatorcontrib>Hammes, Hans-Peter</creatorcontrib><creatorcontrib>Nawroth, Peter</creatorcontrib><creatorcontrib>Fleming, Thomas</creatorcontrib><creatorcontrib>Conkright, Michael D.</creatorcontrib><creatorcontrib>Blüher, Matthias</creatorcontrib><creatorcontrib>Zeigerer, Anja</creatorcontrib><creatorcontrib>Herzig, Stephan</creatorcontrib><creatorcontrib>Berriel Diaz, Mauricio</creatorcontrib><title>A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and β complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) β1, which was identified as a direct hepatic GAbp target. Impairment of AMPKβ1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKβ1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications. [Display omitted] •TNF-α-induced ROS formation diminishes hepatic GAbp transcription factor function•Impaired hepatic GAbp function results in transcriptional inactivation of AMPK•AMPK deficiency increases hepatic cholesterol secretion•Hypercholesterolemia upon GAbp inhibition induces atherosclerotic lesion formation Inflammatory signaling contributes to metabolic disease progression in obesity and diabetes. Niopek et al. identify the transcription factor GAbp to be inactivated in the liver by TNF-α-dependent oxidative stress. Inactivation of GAbp increases cholesterol levels through impaired hepatic AMPK function, contributing to macro-vascular lesion formation as a diabetic long-term complication.</description><subject>AMPK</subject><subject>Animals</subject><subject>atherogenesis</subject><subject>Atherosclerosis - etiology</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Cholesterol - metabolism</subject><subject>GA-Binding Protein Transcription Factor - chemistry</subject><subject>GA-Binding Protein Transcription Factor - metabolism</subject><subject>GAbp</subject><subject>Hepatocytes - metabolism</subject><subject>Hypercholesterolemia - complications</subject><subject>Hypercholesterolemia - metabolism</subject><subject>liver</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction</subject><subject>TNF-α</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UUtv1DAQthCIVqX_ACEfuWTx28kFKSrQrlgEqMDVmjiTlZe8sLOI_fe4pFScsEayNfoenvkIec7ZhjNuXh02HvuI80Ywbjcsl5CPyLkQnBdcKPv4n_cZuUzpwPIxjPNKPSVnorSVFEafk881vcEZluDpdd3MRf3h03ta_wqJ7sL4PdHt2PUwDLBM8URvw36EPox7ukz09pQWHDLvGyR_7CHSNzDAHp-RJx30CS_v7wvy9d3bL1c3xe7j9faq3hVeWbUUUiloZaVawTTrmFLMo_JKGtPoimtrwRj0pS51p9EwXWLuVsz4ykglbCMvyHbVbSc4uDmGAeLJTRDcn8YU9w5inqtHJwQTbeNtqXSrGGSlFjkCll4waThkrZer1hynH0dMixtCyhvuYcTpmByvhC2lyd_NULVCfZxSitg9WHPm7rJxB7dm4-6ycSyXkJn24t7h2AzYPpD-JpEBr1cA5p39DBhd8gFHj22I6Jc8VPi_w29XL54E</recordid><startdate>20170808</startdate><enddate>20170808</enddate><creator>Niopek, Katharina</creator><creator>Üstünel, Bilgen Ekim</creator><creator>Seitz, Susanne</creator><creator>Sakurai, Minako</creator><creator>Zota, Annika</creator><creator>Mattijssen, Frits</creator><creator>Wang, Xiaoyue</creator><creator>Sijmonsma, Tjeerd</creator><creator>Feuchter, Yvonne</creator><creator>Gail, Anna M.</creator><creator>Leuchs, Barbara</creator><creator>Niopek, Dominik</creator><creator>Staufer, Oskar</creator><creator>Brune, Maik</creator><creator>Sticht, Carsten</creator><creator>Gretz, Norbert</creator><creator>Müller-Decker, Karin</creator><creator>Hammes, Hans-Peter</creator><creator>Nawroth, Peter</creator><creator>Fleming, Thomas</creator><creator>Conkright, Michael D.</creator><creator>Blüher, Matthias</creator><creator>Zeigerer, Anja</creator><creator>Herzig, Stephan</creator><creator>Berriel Diaz, Mauricio</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20170808</creationdate><title>A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage</title><author>Niopek, Katharina ; Üstünel, Bilgen Ekim ; Seitz, Susanne ; Sakurai, Minako ; Zota, Annika ; Mattijssen, Frits ; Wang, Xiaoyue ; Sijmonsma, Tjeerd ; Feuchter, Yvonne ; Gail, Anna M. ; Leuchs, Barbara ; Niopek, Dominik ; Staufer, Oskar ; Brune, Maik ; Sticht, Carsten ; Gretz, Norbert ; Müller-Decker, Karin ; Hammes, Hans-Peter ; Nawroth, Peter ; Fleming, Thomas ; Conkright, Michael D. ; Blüher, Matthias ; Zeigerer, Anja ; Herzig, Stephan ; Berriel Diaz, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AMPK</topic><topic>Animals</topic><topic>atherogenesis</topic><topic>Atherosclerosis - etiology</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Cholesterol - metabolism</topic><topic>GA-Binding Protein Transcription Factor - chemistry</topic><topic>GA-Binding Protein Transcription Factor - metabolism</topic><topic>GAbp</topic><topic>Hepatocytes - metabolism</topic><topic>Hypercholesterolemia - complications</topic><topic>Hypercholesterolemia - metabolism</topic><topic>liver</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction</topic><topic>TNF-α</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niopek, Katharina</creatorcontrib><creatorcontrib>Üstünel, Bilgen Ekim</creatorcontrib><creatorcontrib>Seitz, Susanne</creatorcontrib><creatorcontrib>Sakurai, Minako</creatorcontrib><creatorcontrib>Zota, Annika</creatorcontrib><creatorcontrib>Mattijssen, Frits</creatorcontrib><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Sijmonsma, Tjeerd</creatorcontrib><creatorcontrib>Feuchter, Yvonne</creatorcontrib><creatorcontrib>Gail, Anna M.</creatorcontrib><creatorcontrib>Leuchs, Barbara</creatorcontrib><creatorcontrib>Niopek, Dominik</creatorcontrib><creatorcontrib>Staufer, Oskar</creatorcontrib><creatorcontrib>Brune, Maik</creatorcontrib><creatorcontrib>Sticht, Carsten</creatorcontrib><creatorcontrib>Gretz, Norbert</creatorcontrib><creatorcontrib>Müller-Decker, Karin</creatorcontrib><creatorcontrib>Hammes, Hans-Peter</creatorcontrib><creatorcontrib>Nawroth, Peter</creatorcontrib><creatorcontrib>Fleming, Thomas</creatorcontrib><creatorcontrib>Conkright, Michael D.</creatorcontrib><creatorcontrib>Blüher, Matthias</creatorcontrib><creatorcontrib>Zeigerer, Anja</creatorcontrib><creatorcontrib>Herzig, Stephan</creatorcontrib><creatorcontrib>Berriel Diaz, Mauricio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niopek, Katharina</au><au>Üstünel, Bilgen Ekim</au><au>Seitz, Susanne</au><au>Sakurai, Minako</au><au>Zota, Annika</au><au>Mattijssen, Frits</au><au>Wang, Xiaoyue</au><au>Sijmonsma, Tjeerd</au><au>Feuchter, Yvonne</au><au>Gail, Anna M.</au><au>Leuchs, Barbara</au><au>Niopek, Dominik</au><au>Staufer, Oskar</au><au>Brune, Maik</au><au>Sticht, Carsten</au><au>Gretz, Norbert</au><au>Müller-Decker, Karin</au><au>Hammes, Hans-Peter</au><au>Nawroth, Peter</au><au>Fleming, Thomas</au><au>Conkright, Michael D.</au><au>Blüher, Matthias</au><au>Zeigerer, Anja</au><au>Herzig, Stephan</au><au>Berriel Diaz, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2017-08-08</date><risdate>2017</risdate><volume>20</volume><issue>6</issue><spage>1422</spage><epage>1434</epage><pages>1422-1434</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Increased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling. TNF-α prevented GAbpα and β complex formation via reactive oxygen species (ROS), leading to the non-energy-dependent transcriptional inactivation of AMP-activated kinase (AMPK) β1, which was identified as a direct hepatic GAbp target. Impairment of AMPKβ1, in turn, elevated downstream cellular cholesterol biosynthesis, and hepatocyte-specific ablation of GAbpα induced systemic hypercholesterolemia and early macro-vascular lesion formation in mice. As GAbpα and AMPKβ1 levels were also found to correlate in obese human patients, the ROS-GAbp-AMPK pathway may represent a key component of a hepato-vascular axis in diabetic long-term complications. [Display omitted] •TNF-α-induced ROS formation diminishes hepatic GAbp transcription factor function•Impaired hepatic GAbp function results in transcriptional inactivation of AMPK•AMPK deficiency increases hepatic cholesterol secretion•Hypercholesterolemia upon GAbp inhibition induces atherosclerotic lesion formation Inflammatory signaling contributes to metabolic disease progression in obesity and diabetes. Niopek et al. identify the transcription factor GAbp to be inactivated in the liver by TNF-α-dependent oxidative stress. Inactivation of GAbp increases cholesterol levels through impaired hepatic AMPK function, contributing to macro-vascular lesion formation as a diabetic long-term complication.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28793265</pmid><doi>10.1016/j.celrep.2017.07.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2017-08, Vol.20 (6), p.1422-1434
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2202dbc7845d40ae91de1eae8c20361a
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects AMPK
Animals
atherogenesis
Atherosclerosis - etiology
Atherosclerosis - metabolism
Atherosclerosis - pathology
Cell Line
Cells, Cultured
Cholesterol - metabolism
GA-Binding Protein Transcription Factor - chemistry
GA-Binding Protein Transcription Factor - metabolism
GAbp
Hepatocytes - metabolism
Hypercholesterolemia - complications
Hypercholesterolemia - metabolism
liver
Male
Mice
Mice, Inbred C57BL
Protein Kinases - metabolism
Protein Multimerization
Protein Subunits - chemistry
Protein Subunits - metabolism
Reactive Oxygen Species - metabolism
Signal Transduction
TNF-α
Tumor Necrosis Factor-alpha - metabolism
title A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hepatic%20GAbp-AMPK%20Axis%20Links%20Inflammatory%20Signaling%20to%20Systemic%20Vascular%20Damage&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Niopek,%20Katharina&rft.date=2017-08-08&rft.volume=20&rft.issue=6&rft.spage=1422&rft.epage=1434&rft.pages=1422-1434&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2017.07.023&rft_dat=%3Cproquest_doaj_%3E1927836394%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-344ad394d2050f0440ce4c4366b591577a66ec8585f5e6058e915906c963427b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1927836394&rft_id=info:pmid/28793265&rfr_iscdi=true