Loading…

SmartCrawler: A Size-Adaptable In-Pipe Wireless Robotic System with Two-Phase Motion Control Algorithm in Water Distribution Systems

Incidents to pipes cause damage in water distribution systems (WDS) and access to all parts of the WDS is a challenging task. In this paper, we propose an integrated wireless robotic system for in-pipe missions that includes an agile, maneuverable, and size-adaptable (9-in to 22-in) in-pipe robot, &...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-12, Vol.22 (24), p.9666
Main Authors: Kazeminasab, Saber, Banks, M Katherine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Incidents to pipes cause damage in water distribution systems (WDS) and access to all parts of the WDS is a challenging task. In this paper, we propose an integrated wireless robotic system for in-pipe missions that includes an agile, maneuverable, and size-adaptable (9-in to 22-in) in-pipe robot, "SmartCrawler", with 1.56 m/s maximum speed. We develop a two-phase motion control algorithm that enables reliable motion in straight and rotation in non-straight configurations of in-service WDS. We also propose a bi-directional wireless sensor module based on active radio frequency identification (RFID) working in 434 MHz carrier frequency and 120 kbps for up to 5 sensor measurements to enable wireless underground communication with the burial depth of 1.5 m. The integration of the proposed wireless sensor module and the two-phase motion controller demonstrates promising results for wireless control of the in-pipe robot and multi-parameter sensor transmission for in-pipe missions.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22249666