Loading…

Chiral magnetic waves in strongly coupled Weyl semimetals

A bstract Propagating chiral magnetic waves (CMW) are expected to exist in chiral plasmas due to the interplay between the chiral magnetic and chiral separation effects induced by the presence of a chiral anomaly. Unfortunately, it was pointed out that, because of the effects of electric conductivit...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2024-03, Vol.2024 (3), p.124-35, Article 124
Main Authors: Ahn, Yong jun, Baggioli, Matteo, Liu, Yan, Wu, Xin-Meng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract Propagating chiral magnetic waves (CMW) are expected to exist in chiral plasmas due to the interplay between the chiral magnetic and chiral separation effects induced by the presence of a chiral anomaly. Unfortunately, it was pointed out that, because of the effects of electric conductivity and dissipation, CMW are overdamped and therefore their signatures are unlikely to be seen in heavy-ion collision experiments and in the quark gluon plasma. Nonetheless, the chiral anomaly plays a fundamental role in Weyl semimetals and their anomalous transport properties as well. Hence, CMW could be potentially observed in topological semimetals using table-top experiments. By using a holographic model for strongly coupled Weyl semimetals, we investigate in detail the nature of CMW in presence of Coulomb interactions and axial charge relaxation and estimate whether, and in which regimes, CMW could be observed as underdamped collective excitations in topological materials.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP03(2024)124