Loading…

Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment

This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2010-01, Vol.2010 (1), Article 636858
Main Authors: Shafi, Imran, Ahmad, Jamil, Shah, SyedIsmail, Ikram, AtaulAziz, Ahmad Khan, Adnan, Bashir, Sajid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3
cites cdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3
container_end_page
container_issue 1
container_start_page
container_title EURASIP journal on advances in signal processing
container_volume 2010
creator Shafi, Imran
Ahmad, Jamil
Shah, SyedIsmail
Ikram, AtaulAziz
Ahmad Khan, Adnan
Bashir, Sajid
description This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.
doi_str_mv 10.1155/2010/636858
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b</doaj_id><sourcerecordid>oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZP_oHcNXY_ks3mqKWthaIg1es6yU7K1jSpu4mS_npTK-LB0zsM7zwwDyGXjN4wFscjThkdSSFVrI7IgEmVhJIpevxnPiVn3q8pjSWnfEBeX6C0xjZdOGutQRNM292uC8Zl6xt0tloFkw8oW2hsXQVF7YIHbB2UfTSftXsL78D3R0u7wXDq8L3FKu-CJwTv7araYNWck5MCSo8XPzkkz9PJcnwfLh5n8_HtIsxFIpqwwIwViuUSaYRZVORRDEZAkfGISZFTYBlPCsG5oVwalqTIk4ilKQdJU6AghmR-4Joa1nrr7AZcp2uw-ntRu5UG19i8RM05z0xMYyXSLDK5hJSiVMCUTGOVqqxnXR1Yuau9d1j88hjVe9F6L1ofRPft60Pbb_fC0Ol13bqqf_bf-hfkwX5D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Shafi, Imran ; Ahmad, Jamil ; Shah, SyedIsmail ; Ikram, AtaulAziz ; Ahmad Khan, Adnan ; Bashir, Sajid</creator><creatorcontrib>Shafi, Imran ; Ahmad, Jamil ; Shah, SyedIsmail ; Ikram, AtaulAziz ; Ahmad Khan, Adnan ; Bashir, Sajid</creatorcontrib><description>This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/2010/636858</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Quantum Information Technology ; Research Article ; Signal,Image and Speech Processing ; Spintronics ; Time-Frequency Analysis and Its Applications to Multimedia Signals</subject><ispartof>EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 636858</ispartof><rights>Imran Shafi et al. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</citedby><cites>FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shafi, Imran</creatorcontrib><creatorcontrib>Ahmad, Jamil</creatorcontrib><creatorcontrib>Shah, SyedIsmail</creatorcontrib><creatorcontrib>Ikram, AtaulAziz</creatorcontrib><creatorcontrib>Ahmad Khan, Adnan</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><title>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.</description><subject>Engineering</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><subject>Time-Frequency Analysis and Its Applications to Multimedia Signals</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkE1Lw0AQhhdRsFZP_oHcNXY_ks3mqKWthaIg1es6yU7K1jSpu4mS_npTK-LB0zsM7zwwDyGXjN4wFscjThkdSSFVrI7IgEmVhJIpevxnPiVn3q8pjSWnfEBeX6C0xjZdOGutQRNM292uC8Zl6xt0tloFkw8oW2hsXQVF7YIHbB2UfTSftXsL78D3R0u7wXDq8L3FKu-CJwTv7araYNWck5MCSo8XPzkkz9PJcnwfLh5n8_HtIsxFIpqwwIwViuUSaYRZVORRDEZAkfGISZFTYBlPCsG5oVwalqTIk4ilKQdJU6AghmR-4Joa1nrr7AZcp2uw-ntRu5UG19i8RM05z0xMYyXSLDK5hJSiVMCUTGOVqqxnXR1Yuau9d1j88hjVe9F6L1ofRPft60Pbb_fC0Ol13bqqf_bf-hfkwX5D</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Shafi, Imran</creator><creator>Ahmad, Jamil</creator><creator>Shah, SyedIsmail</creator><creator>Ikram, AtaulAziz</creator><creator>Ahmad Khan, Adnan</creator><creator>Bashir, Sajid</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20100101</creationdate><title>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</title><author>Shafi, Imran ; Ahmad, Jamil ; Shah, SyedIsmail ; Ikram, AtaulAziz ; Ahmad Khan, Adnan ; Bashir, Sajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Engineering</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><topic>Time-Frequency Analysis and Its Applications to Multimedia Signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafi, Imran</creatorcontrib><creatorcontrib>Ahmad, Jamil</creatorcontrib><creatorcontrib>Shah, SyedIsmail</creatorcontrib><creatorcontrib>Ikram, AtaulAziz</creatorcontrib><creatorcontrib>Ahmad Khan, Adnan</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafi, Imran</au><au>Ahmad, Jamil</au><au>Shah, SyedIsmail</au><au>Ikram, AtaulAziz</au><au>Ahmad Khan, Adnan</au><au>Bashir, Sajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>1</issue><artnum>636858</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1155/2010/636858</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 636858
issn 1687-6180
1687-6172
1687-6180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Engineering
Quantum Information Technology
Research Article
Signal,Image and Speech Processing
Spintronics
Time-Frequency Analysis and Its Applications to Multimedia Signals
title Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity-Guided%20Fuzzy%20Clustering%20Evaluation%20for%20Neural%20Network-Based%20Time-Frequency%20Reassignment&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Shafi,%20Imran&rft.date=2010-01-01&rft.volume=2010&rft.issue=1&rft.artnum=636858&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/2010/636858&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_222bd505839b4dc6a90e68a18695898b%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true