Loading…
Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment
This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2010-01, Vol.2010 (1), Article 636858 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | EURASIP journal on advances in signal processing |
container_volume | 2010 |
creator | Shafi, Imran Ahmad, Jamil Shah, SyedIsmail Ikram, AtaulAziz Ahmad Khan, Adnan Bashir, Sajid |
description | This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach. |
doi_str_mv | 10.1155/2010/636858 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b</doaj_id><sourcerecordid>oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZP_oHcNXY_ks3mqKWthaIg1es6yU7K1jSpu4mS_npTK-LB0zsM7zwwDyGXjN4wFscjThkdSSFVrI7IgEmVhJIpevxnPiVn3q8pjSWnfEBeX6C0xjZdOGutQRNM292uC8Zl6xt0tloFkw8oW2hsXQVF7YIHbB2UfTSftXsL78D3R0u7wXDq8L3FKu-CJwTv7araYNWck5MCSo8XPzkkz9PJcnwfLh5n8_HtIsxFIpqwwIwViuUSaYRZVORRDEZAkfGISZFTYBlPCsG5oVwalqTIk4ilKQdJU6AghmR-4Joa1nrr7AZcp2uw-ntRu5UG19i8RM05z0xMYyXSLDK5hJSiVMCUTGOVqqxnXR1Yuau9d1j88hjVe9F6L1ofRPft60Pbb_fC0Ol13bqqf_bf-hfkwX5D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Shafi, Imran ; Ahmad, Jamil ; Shah, SyedIsmail ; Ikram, AtaulAziz ; Ahmad Khan, Adnan ; Bashir, Sajid</creator><creatorcontrib>Shafi, Imran ; Ahmad, Jamil ; Shah, SyedIsmail ; Ikram, AtaulAziz ; Ahmad Khan, Adnan ; Bashir, Sajid</creatorcontrib><description>This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/2010/636858</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Quantum Information Technology ; Research Article ; Signal,Image and Speech Processing ; Spintronics ; Time-Frequency Analysis and Its Applications to Multimedia Signals</subject><ispartof>EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 636858</ispartof><rights>Imran Shafi et al. 2010. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</citedby><cites>FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shafi, Imran</creatorcontrib><creatorcontrib>Ahmad, Jamil</creatorcontrib><creatorcontrib>Shah, SyedIsmail</creatorcontrib><creatorcontrib>Ikram, AtaulAziz</creatorcontrib><creatorcontrib>Ahmad Khan, Adnan</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><title>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.</description><subject>Engineering</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Signal,Image and Speech Processing</subject><subject>Spintronics</subject><subject>Time-Frequency Analysis and Its Applications to Multimedia Signals</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkE1Lw0AQhhdRsFZP_oHcNXY_ks3mqKWthaIg1es6yU7K1jSpu4mS_npTK-LB0zsM7zwwDyGXjN4wFscjThkdSSFVrI7IgEmVhJIpevxnPiVn3q8pjSWnfEBeX6C0xjZdOGutQRNM292uC8Zl6xt0tloFkw8oW2hsXQVF7YIHbB2UfTSftXsL78D3R0u7wXDq8L3FKu-CJwTv7araYNWck5MCSo8XPzkkz9PJcnwfLh5n8_HtIsxFIpqwwIwViuUSaYRZVORRDEZAkfGISZFTYBlPCsG5oVwalqTIk4ilKQdJU6AghmR-4Joa1nrr7AZcp2uw-ntRu5UG19i8RM05z0xMYyXSLDK5hJSiVMCUTGOVqqxnXR1Yuau9d1j88hjVe9F6L1ofRPft60Pbb_fC0Ol13bqqf_bf-hfkwX5D</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Shafi, Imran</creator><creator>Ahmad, Jamil</creator><creator>Shah, SyedIsmail</creator><creator>Ikram, AtaulAziz</creator><creator>Ahmad Khan, Adnan</creator><creator>Bashir, Sajid</creator><general>Springer International Publishing</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20100101</creationdate><title>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</title><author>Shafi, Imran ; Ahmad, Jamil ; Shah, SyedIsmail ; Ikram, AtaulAziz ; Ahmad Khan, Adnan ; Bashir, Sajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Engineering</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Signal,Image and Speech Processing</topic><topic>Spintronics</topic><topic>Time-Frequency Analysis and Its Applications to Multimedia Signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafi, Imran</creatorcontrib><creatorcontrib>Ahmad, Jamil</creatorcontrib><creatorcontrib>Shah, SyedIsmail</creatorcontrib><creatorcontrib>Ikram, AtaulAziz</creatorcontrib><creatorcontrib>Ahmad Khan, Adnan</creatorcontrib><creatorcontrib>Bashir, Sajid</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafi, Imran</au><au>Ahmad, Jamil</au><au>Shah, SyedIsmail</au><au>Ikram, AtaulAziz</au><au>Ahmad Khan, Adnan</au><au>Bashir, Sajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>1</issue><artnum>636858</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1155/2010/636858</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP journal on advances in signal processing, 2010-01, Vol.2010 (1), Article 636858 |
issn | 1687-6180 1687-6172 1687-6180 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_222bd505839b4dc6a90e68a18695898b |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | Engineering Quantum Information Technology Research Article Signal,Image and Speech Processing Spintronics Time-Frequency Analysis and Its Applications to Multimedia Signals |
title | Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity-Guided%20Fuzzy%20Clustering%20Evaluation%20for%20Neural%20Network-Based%20Time-Frequency%20Reassignment&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Shafi,%20Imran&rft.date=2010-01-01&rft.volume=2010&rft.issue=1&rft.artnum=636858&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/2010/636858&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_222bd505839b4dc6a90e68a18695898b%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-feb1f81c6e04eb4fc45ad3afb24163c0a1b27f322d026d179e2741992a609a0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |