Loading…
Acarbose glycosylation by AcbE for the production of acarstatins with enhanced α-amylase inhibitory activity
Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 cata...
Saved in:
Published in: | Synthetic and systems biotechnology 2024-06, Vol.9 (2), p.359-368 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 catalyzes the production of acarbose analogs that exhibit significantly improved inhibitory activity towards α-amylase than acarbose. Recombinant AcbE mainly catalyzed the formation of two new compounds, namely acarstatins A and B, using acarbose as substrate. Using high-resolution mass spectrometry, nuclear magnetic resonance, and glycosidase hydrolysis, we elucidated their chemical structures as O-α-d-maltosyl-(1 → 4)-acarbose and O-α-d-maltotriosyl-(1 → 4)-acarbose, respectively. Acarstatins A and B exhibited 1584- and 1478-fold greater inhibitory activity towards human salivary α-amylase than acarbose. Furthermore, both acarstatins A and B exhibited complete resistance to microbiome-derived acarbose kinase 1-mediated phosphorylation and partial resistance to acarbose-preferred glucosidase-mediated hydrolysis. Therefore, acarstatins A and B have great potential as candidate therapeutic agents for T2DM. |
---|---|
ISSN: | 2405-805X 2405-805X |
DOI: | 10.1016/j.synbio.2024.03.006 |