Loading…
Correlation detection as a general mechanism for multisensory integration
The brain efficiently processes multisensory information by selectively combining related signals across the continuous stream of multisensory inputs. To do so, it needs to detect correlation, lag and synchrony across the senses; optimally integrate related information; and dynamically adapt to spat...
Saved in:
Published in: | Nature communications 2016-06, Vol.7 (1), p.11543-11543, Article 11543 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53 |
container_end_page | 11543 |
container_issue | 1 |
container_start_page | 11543 |
container_title | Nature communications |
container_volume | 7 |
creator | Parise, Cesare V. Ernst, Marc O. |
description | The brain efficiently processes multisensory information by selectively combining related signals across the continuous stream of multisensory inputs. To do so, it needs to detect correlation, lag and synchrony across the senses; optimally integrate related information; and dynamically adapt to spatiotemporal conflicts across the senses. Here we show that all these aspects of multisensory perception can be jointly explained by postulating an elementary processing unit akin to the Hassenstein–Reichardt detector—a model originally developed for visual motion perception. This unit, termed the multisensory correlation detector (MCD), integrates related multisensory signals through a set of temporal filters followed by linear combination. Our model can tightly replicate human perception as measured in a series of empirical studies, both novel and previously published. MCDs provide a unified general theory of multisensory processing, which simultaneously explains a wide spectrum of phenomena with a simple, yet physiologically plausible model.
The human brain integrates inputs across multiple sensory streams into a unified percept. Here Parise and Ernst present a model that assesses the correlation, lag and synchrony of multisensory stimuli, and predicts psychophysical performance on multisensory temporal and spatial tasks. |
doi_str_mv | 10.1038/ncomms11543 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_224527d4f0344ca0b51b1fab94243a4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_224527d4f0344ca0b51b1fab94243a4f</doaj_id><sourcerecordid>4079244401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53</originalsourceid><addsrcrecordid>eNptkc9rFDEUxwex2FJ78i4DXgRdzY-XyeQiyNLahUIveg6ZzMs0y0xSkxmh_73Z3Vq20lwS8j755Ju8qnpHyRdKePs12DhNmVIB_FV1xgjQFZWMvz5an1YXOW9JGVzRFuBNdcoka4RgzVm1WceUcDSzj6HucUa7X5lcm3rAgMmM9YT2zgSfp9rFVE_LOPuMIcf0UPsw45D2p99WJ86MGS8e5_Pq19Xlz_X16ub2x2b9_WZlhWznFXScNqrpjFMcobHSMt51QFp0CprGud5SagU660p2QWlHLUiuSAtcIgp-Xm0O3j6arb5PfjLpQUfj9X4jpkGbNHs7omYMBJM9OMIBrCGdKDZnOgUMuAFXXN8Orvulm7C3GOby4GfS55Xg7_QQ_2holZRiF-bjoyDF3wvmWU8-WxxHEzAuWVOpABoFUhb0w3_oNi4plK_aUVyVqMAL9elA2RRzTuiewlCidx3XRx0v9Pvj_E_sv_4W4PMByKUUBkxHl77g-wuYnrbz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793945243</pqid></control><display><type>article</type><title>Correlation detection as a general mechanism for multisensory integration</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Parise, Cesare V. ; Ernst, Marc O.</creator><creatorcontrib>Parise, Cesare V. ; Ernst, Marc O.</creatorcontrib><description>The brain efficiently processes multisensory information by selectively combining related signals across the continuous stream of multisensory inputs. To do so, it needs to detect correlation, lag and synchrony across the senses; optimally integrate related information; and dynamically adapt to spatiotemporal conflicts across the senses. Here we show that all these aspects of multisensory perception can be jointly explained by postulating an elementary processing unit akin to the Hassenstein–Reichardt detector—a model originally developed for visual motion perception. This unit, termed the multisensory correlation detector (MCD), integrates related multisensory signals through a set of temporal filters followed by linear combination. Our model can tightly replicate human perception as measured in a series of empirical studies, both novel and previously published. MCDs provide a unified general theory of multisensory processing, which simultaneously explains a wide spectrum of phenomena with a simple, yet physiologically plausible model.
The human brain integrates inputs across multiple sensory streams into a unified percept. Here Parise and Ernst present a model that assesses the correlation, lag and synchrony of multisensory stimuli, and predicts psychophysical performance on multisensory temporal and spatial tasks.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms11543</identifier><identifier>PMID: 27265526</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2571/2572 ; 631/378/2620 ; Acoustic Stimulation ; Adult ; Auditory Perception - physiology ; Computer Simulation ; Correspondence ; Cues ; Female ; Humanities and Social Sciences ; Humans ; Input output ; Judgment ; Male ; Models, Neurological ; Motion detectors ; multidisciplinary ; Neurosciences ; Photic Stimulation ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Sensation ; Senses ; Time Factors ; Visual Perception - physiology ; Young Adult</subject><ispartof>Nature communications, 2016-06, Vol.7 (1), p.11543-11543, Article 11543</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53</citedby><cites>FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1793945243/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1793945243?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27265526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parise, Cesare V.</creatorcontrib><creatorcontrib>Ernst, Marc O.</creatorcontrib><title>Correlation detection as a general mechanism for multisensory integration</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The brain efficiently processes multisensory information by selectively combining related signals across the continuous stream of multisensory inputs. To do so, it needs to detect correlation, lag and synchrony across the senses; optimally integrate related information; and dynamically adapt to spatiotemporal conflicts across the senses. Here we show that all these aspects of multisensory perception can be jointly explained by postulating an elementary processing unit akin to the Hassenstein–Reichardt detector—a model originally developed for visual motion perception. This unit, termed the multisensory correlation detector (MCD), integrates related multisensory signals through a set of temporal filters followed by linear combination. Our model can tightly replicate human perception as measured in a series of empirical studies, both novel and previously published. MCDs provide a unified general theory of multisensory processing, which simultaneously explains a wide spectrum of phenomena with a simple, yet physiologically plausible model.
The human brain integrates inputs across multiple sensory streams into a unified percept. Here Parise and Ernst present a model that assesses the correlation, lag and synchrony of multisensory stimuli, and predicts psychophysical performance on multisensory temporal and spatial tasks.</description><subject>631/378/2571/2572</subject><subject>631/378/2620</subject><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Auditory Perception - physiology</subject><subject>Computer Simulation</subject><subject>Correspondence</subject><subject>Cues</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Input output</subject><subject>Judgment</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Motion detectors</subject><subject>multidisciplinary</subject><subject>Neurosciences</subject><subject>Photic Stimulation</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensation</subject><subject>Senses</subject><subject>Time Factors</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9rFDEUxwex2FJ78i4DXgRdzY-XyeQiyNLahUIveg6ZzMs0y0xSkxmh_73Z3Vq20lwS8j755Ju8qnpHyRdKePs12DhNmVIB_FV1xgjQFZWMvz5an1YXOW9JGVzRFuBNdcoka4RgzVm1WceUcDSzj6HucUa7X5lcm3rAgMmM9YT2zgSfp9rFVE_LOPuMIcf0UPsw45D2p99WJ86MGS8e5_Pq19Xlz_X16ub2x2b9_WZlhWznFXScNqrpjFMcobHSMt51QFp0CprGud5SagU660p2QWlHLUiuSAtcIgp-Xm0O3j6arb5PfjLpQUfj9X4jpkGbNHs7omYMBJM9OMIBrCGdKDZnOgUMuAFXXN8Orvulm7C3GOby4GfS55Xg7_QQ_2holZRiF-bjoyDF3wvmWU8-WxxHEzAuWVOpABoFUhb0w3_oNi4plK_aUVyVqMAL9elA2RRzTuiewlCidx3XRx0v9Pvj_E_sv_4W4PMByKUUBkxHl77g-wuYnrbz</recordid><startdate>20160606</startdate><enddate>20160606</enddate><creator>Parise, Cesare V.</creator><creator>Ernst, Marc O.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160606</creationdate><title>Correlation detection as a general mechanism for multisensory integration</title><author>Parise, Cesare V. ; Ernst, Marc O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/378/2571/2572</topic><topic>631/378/2620</topic><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Auditory Perception - physiology</topic><topic>Computer Simulation</topic><topic>Correspondence</topic><topic>Cues</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Input output</topic><topic>Judgment</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Motion detectors</topic><topic>multidisciplinary</topic><topic>Neurosciences</topic><topic>Photic Stimulation</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensation</topic><topic>Senses</topic><topic>Time Factors</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parise, Cesare V.</creatorcontrib><creatorcontrib>Ernst, Marc O.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parise, Cesare V.</au><au>Ernst, Marc O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation detection as a general mechanism for multisensory integration</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-06-06</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>11543</spage><epage>11543</epage><pages>11543-11543</pages><artnum>11543</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The brain efficiently processes multisensory information by selectively combining related signals across the continuous stream of multisensory inputs. To do so, it needs to detect correlation, lag and synchrony across the senses; optimally integrate related information; and dynamically adapt to spatiotemporal conflicts across the senses. Here we show that all these aspects of multisensory perception can be jointly explained by postulating an elementary processing unit akin to the Hassenstein–Reichardt detector—a model originally developed for visual motion perception. This unit, termed the multisensory correlation detector (MCD), integrates related multisensory signals through a set of temporal filters followed by linear combination. Our model can tightly replicate human perception as measured in a series of empirical studies, both novel and previously published. MCDs provide a unified general theory of multisensory processing, which simultaneously explains a wide spectrum of phenomena with a simple, yet physiologically plausible model.
The human brain integrates inputs across multiple sensory streams into a unified percept. Here Parise and Ernst present a model that assesses the correlation, lag and synchrony of multisensory stimuli, and predicts psychophysical performance on multisensory temporal and spatial tasks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27265526</pmid><doi>10.1038/ncomms11543</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-06, Vol.7 (1), p.11543-11543, Article 11543 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_224527d4f0344ca0b51b1fab94243a4f |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/2571/2572 631/378/2620 Acoustic Stimulation Adult Auditory Perception - physiology Computer Simulation Correspondence Cues Female Humanities and Social Sciences Humans Input output Judgment Male Models, Neurological Motion detectors multidisciplinary Neurosciences Photic Stimulation Reproducibility of Results Science Science (multidisciplinary) Sensation Senses Time Factors Visual Perception - physiology Young Adult |
title | Correlation detection as a general mechanism for multisensory integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20detection%20as%20a%20general%20mechanism%20for%20multisensory%20integration&rft.jtitle=Nature%20communications&rft.au=Parise,%20Cesare%20V.&rft.date=2016-06-06&rft.volume=7&rft.issue=1&rft.spage=11543&rft.epage=11543&rft.pages=11543-11543&rft.artnum=11543&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms11543&rft_dat=%3Cproquest_doaj_%3E4079244401%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-4b31696baf93e46c7c23bb408ef9466ffdc11c5efcf723511b1c473908437ee53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793945243&rft_id=info:pmid/27265526&rfr_iscdi=true |