Loading…
A novel centralized slow control and board management solution for ATCA blades based on the Zynq Ultrascale+ System-on-Chip
Data acquisition systems (DAQ) for high energy physics experiments utilize complex FPGAs to handle unprecedented high data rates, especially in the first stages of the data processing chain. The complexity of developing and commissioning these systems increases as additional local processing intelli...
Saved in:
Published in: | EPJ Web of conferences 2020, Vol.245, p.1015 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data acquisition systems (DAQ) for high energy physics experiments utilize complex FPGAs to handle unprecedented high data rates, especially in the first stages of the data processing chain. The complexity of developing and commissioning these systems increases as additional local processing intelligence is placed closer to the detector directly on the ATCA blades. On the other hand, sophisticated slow control is as well desired. In this contribution, we introduce a novel solution for ATCA based systems, which combines the IPMI, a Linux based slow-control software, and an FPGA for custom slow-control tasks in one single Zynq Ultrascale+ (ZUS+) System-on-Chip (SoC) module. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/202024501015 |