Loading…

A Study of the Application and the Limitations of GPR Investigation on Underground Survey of the Korean Expressways

In this study, the applications and the limitations of the Ground-penetrating radar (GPR) investigation have been addressed with the main objective of improving the efficient GPR application of subsurface surveys on Korean expressways. The depth of investigation and detection performance of anomalou...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2021-05, Vol.13 (9), p.1805
Main Authors: Rhee, Ji-Young, Park, Keon-Tae, Cho, Jin-Woo, Lee, Sang-Yum
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the applications and the limitations of the Ground-penetrating radar (GPR) investigation have been addressed with the main objective of improving the efficient GPR application of subsurface surveys on Korean expressways. The depth of investigation and detection performance of anomalous objects have been studied using two different types of multichannel GPR on the Korean Expressway Corporation’s nondestructive testing testbed for subsurface detection. Based on the field survey, it was found that utilizing the plane view by depth, cross-sectional and longitudinal profile data of the multichannel GPR simultaneously, analysis and evaluation of the GPR signals are more efficient and practical. Although there was a difference in the frequency of use, the precision difference between two GPR is almost similar in the investigation depth and detection performance of the pavement subsurface anomaly. Under an asphalt concrete standard pavement section, the effective depth of cavity detection is 1–1.5 m, while detection under concrete pavement is less than 1.0 m. In addition, there is still a need to calibrate depths using field cores when constructing a 3D underground facility map.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13091805