Loading…
Effects from Fe, P, Ca, Mg, Zn and Cu in Steel Slag on Growth and Metabolite Accumulation of Microalgae: A Review
Steel slag is the solid waste produced by the steelmaking process. At present, there are differences in the treatment and utilization of this waste among countries around the world. The massive accumulation of steel slag not only occupies land, but also the heavy metal elements in steel slag leached...
Saved in:
Published in: | Applied sciences 2021-07, Vol.11 (14), p.6589 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Steel slag is the solid waste produced by the steelmaking process. At present, there are differences in the treatment and utilization of this waste among countries around the world. The massive accumulation of steel slag not only occupies land, but also the heavy metal elements in steel slag leached by rainwater cause serious pollution to the soil and groundwater, both which threaten the life and survival of the surrounding residents. More and more attention has been paid to the resource utilization of slag because of the gradual promotion of energy saving and emission reduction all over the world. Currently, the fields that utilize slag focus on recycling of steel waste, acting as sinter raw material, dephosphorization of hot metal, road and water conservancy project construction, wastewater treatment material, application of CO2 capture and flue gas desulfurization or agriculture. Many researchers have carried out research and explorations on the effects of slag on microalgae’s growth and found that slag has enormous potential algal biomasses and huge advantages for promoting microalgae’s growth and the accumulation of metabolites. Under suitable conditions, slag can effectively promote microalgae’s growth and reproduction, as well as promote microalgae’s accumulation of metabolites, especially lipid accumulation. Thus, slag can be used as an ideal nutrient for microalgae. Culturing microalgae with slag can lower the cost and solve the problem of lacking Fe during the process of marine microalgae’s growth. Meanwhile, it can alleviate the phenomenon of the substantial stacking of slag. This study provides new methods for slag’s resource utilization. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11146589 |