Loading…

Effects from Fe, P, Ca, Mg, Zn and Cu in Steel Slag on Growth and Metabolite Accumulation of Microalgae: A Review

Steel slag is the solid waste produced by the steelmaking process. At present, there are differences in the treatment and utilization of this waste among countries around the world. The massive accumulation of steel slag not only occupies land, but also the heavy metal elements in steel slag leached...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-07, Vol.11 (14), p.6589
Main Authors: Liu, Tianji, Wang, Yitong, Li, Junguo, Yu, Qing, Wang, Xiaoman, Gao, Di, Wang, Fuping, Cai, Shuang, Zeng, Yanan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steel slag is the solid waste produced by the steelmaking process. At present, there are differences in the treatment and utilization of this waste among countries around the world. The massive accumulation of steel slag not only occupies land, but also the heavy metal elements in steel slag leached by rainwater cause serious pollution to the soil and groundwater, both which threaten the life and survival of the surrounding residents. More and more attention has been paid to the resource utilization of slag because of the gradual promotion of energy saving and emission reduction all over the world. Currently, the fields that utilize slag focus on recycling of steel waste, acting as sinter raw material, dephosphorization of hot metal, road and water conservancy project construction, wastewater treatment material, application of CO2 capture and flue gas desulfurization or agriculture. Many researchers have carried out research and explorations on the effects of slag on microalgae’s growth and found that slag has enormous potential algal biomasses and huge advantages for promoting microalgae’s growth and the accumulation of metabolites. Under suitable conditions, slag can effectively promote microalgae’s growth and reproduction, as well as promote microalgae’s accumulation of metabolites, especially lipid accumulation. Thus, slag can be used as an ideal nutrient for microalgae. Culturing microalgae with slag can lower the cost and solve the problem of lacking Fe during the process of marine microalgae’s growth. Meanwhile, it can alleviate the phenomenon of the substantial stacking of slag. This study provides new methods for slag’s resource utilization.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11146589