Loading…
Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models
Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoto...
Saved in:
Published in: | Frontiers in cellular neuroscience 2020-12, Vol.14, p.592607 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3 |
---|---|
cites | cdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3 |
container_end_page | |
container_issue | |
container_start_page | 592607 |
container_title | Frontiers in cellular neuroscience |
container_volume | 14 |
creator | Subramanian, Jaichandar Savage, Julie C Tremblay, Marie-Ève |
description | Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton
imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss. |
doi_str_mv | 10.3389/fncel.2020.592607 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_22d69a7f53b244da813c034e3632b99b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_22d69a7f53b244da813c034e3632b99b</doaj_id><sourcerecordid>2471579698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIREvgB7BBllh0leDHjB8skKryipSKSoS15bGvJ44mdrAnQUH8eCZNqdoVG9u6PvfTPbqnql4TPGNMqnc-WuhnFFM8axTlWDypzgnndNoQTJ8-eJ9VL0pZY8wpr-Xz6oyxGktO2Hn15_shmu0QLFqkUlCI6LL_vYKwgXxR0MdQwBR4j67BrkwM5SicxxK61VDQTU774MCh9oCWv9L0ZpWGFI-MfdgnNN-YLsQOJY-W2cTSQRy7r9OuwHg66MvL6pk3fYFXd_ek-vH50_Lq63Tx7cv86nIxtY0Uw5SDV42UgGkjnHWEcCOII3SsKN60wivRgpUWiHC48YY7pShY8MSD8Q7YpJqfuC6Ztd7msDH5oJMJ-raQcqdNHq31oCl1XBnhG9bSunZGEmYxq4FxRlul2pH14cTa7toNOAtxyKZ_BH38E8NKd2mvhZBYymYEvL0D5PRzB2XQ67TLcfSvaS1IIxRX8j8qLKRi42iTipxUNo_by-Dv5yBYHyOibyOijxHRp4iMPW8eGrjv-JcJ9hcvQrnV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470789381</pqid></control><display><type>article</type><title>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Subramanian, Jaichandar ; Savage, Julie C ; Tremblay, Marie-Ève</creator><creatorcontrib>Subramanian, Jaichandar ; Savage, Julie C ; Tremblay, Marie-Ève</creatorcontrib><description>Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton
imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2020.592607</identifier><identifier>PMID: 33408613</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Alzheimer's disease ; Amyloid ; amyloid mouse models ; Animal models ; Brain ; Calcium homeostasis ; Cellular Neuroscience ; Cognitive ability ; dendritic spines ; in vivo imaging ; Microglia ; Microscopy ; Morphology ; Mutation ; Neurodegenerative diseases ; Neuroimaging ; Pathology ; Proteins ; Rodents ; Transgenic mice ; two-photon ; Visualization</subject><ispartof>Frontiers in cellular neuroscience, 2020-12, Vol.14, p.592607</ispartof><rights>Copyright © 2020 Subramanian, Savage and Tremblay.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Subramanian, Savage and Tremblay. 2020 Subramanian, Savage and Tremblay</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</citedby><cites>FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471579698/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471579698?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33408613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Jaichandar</creatorcontrib><creatorcontrib>Savage, Julie C</creatorcontrib><creatorcontrib>Tremblay, Marie-Ève</creatorcontrib><title>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton
imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.</description><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>amyloid mouse models</subject><subject>Animal models</subject><subject>Brain</subject><subject>Calcium homeostasis</subject><subject>Cellular Neuroscience</subject><subject>Cognitive ability</subject><subject>dendritic spines</subject><subject>in vivo imaging</subject><subject>Microglia</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Pathology</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Transgenic mice</subject><subject>two-photon</subject><subject>Visualization</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktvEzEUhUcIREvgB7BBllh0leDHjB8skKryipSKSoS15bGvJ44mdrAnQUH8eCZNqdoVG9u6PvfTPbqnql4TPGNMqnc-WuhnFFM8axTlWDypzgnndNoQTJ8-eJ9VL0pZY8wpr-Xz6oyxGktO2Hn15_shmu0QLFqkUlCI6LL_vYKwgXxR0MdQwBR4j67BrkwM5SicxxK61VDQTU774MCh9oCWv9L0ZpWGFI-MfdgnNN-YLsQOJY-W2cTSQRy7r9OuwHg66MvL6pk3fYFXd_ek-vH50_Lq63Tx7cv86nIxtY0Uw5SDV42UgGkjnHWEcCOII3SsKN60wivRgpUWiHC48YY7pShY8MSD8Q7YpJqfuC6Ztd7msDH5oJMJ-raQcqdNHq31oCl1XBnhG9bSunZGEmYxq4FxRlul2pH14cTa7toNOAtxyKZ_BH38E8NKd2mvhZBYymYEvL0D5PRzB2XQ67TLcfSvaS1IIxRX8j8qLKRi42iTipxUNo_by-Dv5yBYHyOibyOijxHRp4iMPW8eGrjv-JcJ9hcvQrnV</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Subramanian, Jaichandar</creator><creator>Savage, Julie C</creator><creator>Tremblay, Marie-Ève</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201217</creationdate><title>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</title><author>Subramanian, Jaichandar ; Savage, Julie C ; Tremblay, Marie-Ève</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>amyloid mouse models</topic><topic>Animal models</topic><topic>Brain</topic><topic>Calcium homeostasis</topic><topic>Cellular Neuroscience</topic><topic>Cognitive ability</topic><topic>dendritic spines</topic><topic>in vivo imaging</topic><topic>Microglia</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Pathology</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Transgenic mice</topic><topic>two-photon</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Jaichandar</creatorcontrib><creatorcontrib>Savage, Julie C</creatorcontrib><creatorcontrib>Tremblay, Marie-Ève</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Jaichandar</au><au>Savage, Julie C</au><au>Tremblay, Marie-Ève</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>14</volume><spage>592607</spage><pages>592607-</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton
imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>33408613</pmid><doi>10.3389/fncel.2020.592607</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5102 |
ispartof | Frontiers in cellular neuroscience, 2020-12, Vol.14, p.592607 |
issn | 1662-5102 1662-5102 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_22d69a7f53b244da813c034e3632b99b |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Alzheimer's disease Amyloid amyloid mouse models Animal models Brain Calcium homeostasis Cellular Neuroscience Cognitive ability dendritic spines in vivo imaging Microglia Microscopy Morphology Mutation Neurodegenerative diseases Neuroimaging Pathology Proteins Rodents Transgenic mice two-photon Visualization |
title | Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Loss%20in%20Alzheimer's%20Disease:%20Mechanistic%20Insights%20Provided%20by%20Two-Photon%20in%20vivo%20Imaging%20of%20Transgenic%20Mouse%20Models&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Subramanian,%20Jaichandar&rft.date=2020-12-17&rft.volume=14&rft.spage=592607&rft.pages=592607-&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2020.592607&rft_dat=%3Cproquest_doaj_%3E2471579698%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470789381&rft_id=info:pmid/33408613&rfr_iscdi=true |