Loading…

Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models

Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoto...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cellular neuroscience 2020-12, Vol.14, p.592607
Main Authors: Subramanian, Jaichandar, Savage, Julie C, Tremblay, Marie-Ève
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3
cites cdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3
container_end_page
container_issue
container_start_page 592607
container_title Frontiers in cellular neuroscience
container_volume 14
creator Subramanian, Jaichandar
Savage, Julie C
Tremblay, Marie-Ève
description Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.
doi_str_mv 10.3389/fncel.2020.592607
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_22d69a7f53b244da813c034e3632b99b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_22d69a7f53b244da813c034e3632b99b</doaj_id><sourcerecordid>2471579698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIREvgB7BBllh0leDHjB8skKryipSKSoS15bGvJ44mdrAnQUH8eCZNqdoVG9u6PvfTPbqnql4TPGNMqnc-WuhnFFM8axTlWDypzgnndNoQTJ8-eJ9VL0pZY8wpr-Xz6oyxGktO2Hn15_shmu0QLFqkUlCI6LL_vYKwgXxR0MdQwBR4j67BrkwM5SicxxK61VDQTU774MCh9oCWv9L0ZpWGFI-MfdgnNN-YLsQOJY-W2cTSQRy7r9OuwHg66MvL6pk3fYFXd_ek-vH50_Lq63Tx7cv86nIxtY0Uw5SDV42UgGkjnHWEcCOII3SsKN60wivRgpUWiHC48YY7pShY8MSD8Q7YpJqfuC6Ztd7msDH5oJMJ-raQcqdNHq31oCl1XBnhG9bSunZGEmYxq4FxRlul2pH14cTa7toNOAtxyKZ_BH38E8NKd2mvhZBYymYEvL0D5PRzB2XQ67TLcfSvaS1IIxRX8j8qLKRi42iTipxUNo_by-Dv5yBYHyOibyOijxHRp4iMPW8eGrjv-JcJ9hcvQrnV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470789381</pqid></control><display><type>article</type><title>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Subramanian, Jaichandar ; Savage, Julie C ; Tremblay, Marie-Ève</creator><creatorcontrib>Subramanian, Jaichandar ; Savage, Julie C ; Tremblay, Marie-Ève</creatorcontrib><description>Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2020.592607</identifier><identifier>PMID: 33408613</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Alzheimer's disease ; Amyloid ; amyloid mouse models ; Animal models ; Brain ; Calcium homeostasis ; Cellular Neuroscience ; Cognitive ability ; dendritic spines ; in vivo imaging ; Microglia ; Microscopy ; Morphology ; Mutation ; Neurodegenerative diseases ; Neuroimaging ; Pathology ; Proteins ; Rodents ; Transgenic mice ; two-photon ; Visualization</subject><ispartof>Frontiers in cellular neuroscience, 2020-12, Vol.14, p.592607</ispartof><rights>Copyright © 2020 Subramanian, Savage and Tremblay.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Subramanian, Savage and Tremblay. 2020 Subramanian, Savage and Tremblay</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</citedby><cites>FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471579698/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471579698?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33408613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Jaichandar</creatorcontrib><creatorcontrib>Savage, Julie C</creatorcontrib><creatorcontrib>Tremblay, Marie-Ève</creatorcontrib><title>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.</description><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>amyloid mouse models</subject><subject>Animal models</subject><subject>Brain</subject><subject>Calcium homeostasis</subject><subject>Cellular Neuroscience</subject><subject>Cognitive ability</subject><subject>dendritic spines</subject><subject>in vivo imaging</subject><subject>Microglia</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Pathology</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Transgenic mice</subject><subject>two-photon</subject><subject>Visualization</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktvEzEUhUcIREvgB7BBllh0leDHjB8skKryipSKSoS15bGvJ44mdrAnQUH8eCZNqdoVG9u6PvfTPbqnql4TPGNMqnc-WuhnFFM8axTlWDypzgnndNoQTJ8-eJ9VL0pZY8wpr-Xz6oyxGktO2Hn15_shmu0QLFqkUlCI6LL_vYKwgXxR0MdQwBR4j67BrkwM5SicxxK61VDQTU774MCh9oCWv9L0ZpWGFI-MfdgnNN-YLsQOJY-W2cTSQRy7r9OuwHg66MvL6pk3fYFXd_ek-vH50_Lq63Tx7cv86nIxtY0Uw5SDV42UgGkjnHWEcCOII3SsKN60wivRgpUWiHC48YY7pShY8MSD8Q7YpJqfuC6Ztd7msDH5oJMJ-raQcqdNHq31oCl1XBnhG9bSunZGEmYxq4FxRlul2pH14cTa7toNOAtxyKZ_BH38E8NKd2mvhZBYymYEvL0D5PRzB2XQ67TLcfSvaS1IIxRX8j8qLKRi42iTipxUNo_by-Dv5yBYHyOibyOijxHRp4iMPW8eGrjv-JcJ9hcvQrnV</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Subramanian, Jaichandar</creator><creator>Savage, Julie C</creator><creator>Tremblay, Marie-Ève</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20201217</creationdate><title>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</title><author>Subramanian, Jaichandar ; Savage, Julie C ; Tremblay, Marie-Ève</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>amyloid mouse models</topic><topic>Animal models</topic><topic>Brain</topic><topic>Calcium homeostasis</topic><topic>Cellular Neuroscience</topic><topic>Cognitive ability</topic><topic>dendritic spines</topic><topic>in vivo imaging</topic><topic>Microglia</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Pathology</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Transgenic mice</topic><topic>two-photon</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Jaichandar</creatorcontrib><creatorcontrib>Savage, Julie C</creatorcontrib><creatorcontrib>Tremblay, Marie-Ève</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Jaichandar</au><au>Savage, Julie C</au><au>Tremblay, Marie-Ève</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>14</volume><spage>592607</spage><pages>592607-</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>33408613</pmid><doi>10.3389/fncel.2020.592607</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5102
ispartof Frontiers in cellular neuroscience, 2020-12, Vol.14, p.592607
issn 1662-5102
1662-5102
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_22d69a7f53b244da813c034e3632b99b
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alzheimer's disease
Amyloid
amyloid mouse models
Animal models
Brain
Calcium homeostasis
Cellular Neuroscience
Cognitive ability
dendritic spines
in vivo imaging
Microglia
Microscopy
Morphology
Mutation
Neurodegenerative diseases
Neuroimaging
Pathology
Proteins
Rodents
Transgenic mice
two-photon
Visualization
title Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Loss%20in%20Alzheimer's%20Disease:%20Mechanistic%20Insights%20Provided%20by%20Two-Photon%20in%20vivo%20Imaging%20of%20Transgenic%20Mouse%20Models&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Subramanian,%20Jaichandar&rft.date=2020-12-17&rft.volume=14&rft.spage=592607&rft.pages=592607-&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2020.592607&rft_dat=%3Cproquest_doaj_%3E2471579698%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-6ef9588e0257dcd116a71d128e0965b7f97bec8ce17d05fa6d992ecef1feafde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2470789381&rft_id=info:pmid/33408613&rfr_iscdi=true