Loading…

Synthesis Single Crystal X-ray Structure DFT Studies and Hirshfeld Analysis of New Benzylsulfanyl-Triazolyl-Indole Scaffold

Benzylsulfanyl-triazolyl-indole scaffold was synthesized through coupling of 4-amino-5-(1H-indol-2-yl)-1,2,4-triazol-3(2H)-thione and benzyl bromide in EtOH under basic conditions (K2CO3). The benzylation direction was deduced from the 13C NMR signal found at 35.09 ppm, assigned for the methylene ca...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2020-08, Vol.10 (8), p.685
Main Authors: Boraei, Ahmed T. A., Soliman, Saied M., Yousuf, Sammer, Barakat, Assem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benzylsulfanyl-triazolyl-indole scaffold was synthesized through coupling of 4-amino-5-(1H-indol-2-yl)-1,2,4-triazol-3(2H)-thione and benzyl bromide in EtOH under basic conditions (K2CO3). The benzylation direction was deduced from the 13C NMR signal found at 35.09 ppm, assigned for the methylene carbon of the benzyl group, this value indicates that the benzyl group attacks sulfur, not nitrogen. 1H NMR, 13C NMR, COSY, HMQC, HRMS and X-ray single crystal diffraction analysis were used for structure assignment. The desired compound accomplished in good yield. Hirshfeld analysis revealed the importance of the short N...H (1.994–2.595 Ǻ), S…H (2.282 Ǻ) and C…H (2.670 Ǻ) contacts as well as the weak π-π stacking interactions in the molecular packing of benzylthio-triazolyl-indole scaffold. Its electronic and structural aspects were predicted using density functional theory (DFT) calculations and the reactivity descriptors as well. The Uv-Vis spectral bands were assigned based on the time-dependant density functional theory TD-DFT calculations, while the gauge-including atomic orbitals (GIAO) method was used to predict the 1H and 13C NMR chemical shifts.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst10080685