Loading…

TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins

S -nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S -nitrosothiol (SNO) adduct. S -nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including c...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2023-04, Vol.14 (4), p.284-284, Article 284
Main Authors: Papaleo, Elena, Tiberti, Matteo, Arnaudi, Matteo, Pecorari, Chiara, Faienza, Fiorella, Cantwell, Lisa, Degn, Kristine, Pacello, Francesca, Battistoni, Andrea, Lambrughi, Matteo, Filomeni, Giuseppe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663
cites cdi_FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663
container_end_page 284
container_issue 4
container_start_page 284
container_title Cell death & disease
container_volume 14
creator Papaleo, Elena
Tiberti, Matteo
Arnaudi, Matteo
Pecorari, Chiara
Faienza, Fiorella
Cantwell, Lisa
Degn, Kristine
Pacello, Francesca
Battistoni, Andrea
Lambrughi, Matteo
Filomeni, Giuseppe
description S -nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S -nitrosothiol (SNO) adduct. S -nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S -nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S -nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S- nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S -nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S -nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S -nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.
doi_str_mv 10.1038/s41419-023-05780-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_231b05c6fe294700a44ea7fd0b19bdbf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_231b05c6fe294700a44ea7fd0b19bdbf</doaj_id><sourcerecordid>2804144495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBXHOeEqoqPSpVAUM6WY493vUrixXaq7pk_jtOU0nLAF1sz7zz2eN6qeknwW4KZfJc44aSrMWU1blqJa_GkOqaYk5pL2T19cD6qTlPa4bIYw7QRz6sj1mLZcMmOq19X386-EvS9nnyOIR0GnX2YkE5IozFYGFBwaB_285qo09a7jEYwWz35NKIcUMqzPaC8BQTOgclpKVlw3qBw4y2gAoxgw02dYEo---slZMI-hgx-Si-qZ04PCU7v9pPqx8cPV-ef68svny7Ozy5r03CS6160xFnppOSOcUvAGSt6qU0nSqtNiZZcRzEIbXrZaA2GU4ZbzgTBnRDspLpYuTbondpHP-p4UEF7dRsIcaN0zN4MoCgjPW6McEA73mKsOQfdOot70vW2d4X1fmXt534Ea2DKUQ-PoI8zk9-qTbhWBBNKRNMVwps7Qgw_Z0hZjT4ZGAY9QZiTohI3mNEysSJ9_Y90F-Y4lb9aVMUInHeLiq4qUwaZIrj71xCsFs-o1TOqeEbdekYtf_LqYR_3JX8cUgRsFaSSmjYQ_979H-xvAPrOaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804144495</pqid></control><display><type>article</type><title>TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Papaleo, Elena ; Tiberti, Matteo ; Arnaudi, Matteo ; Pecorari, Chiara ; Faienza, Fiorella ; Cantwell, Lisa ; Degn, Kristine ; Pacello, Francesca ; Battistoni, Andrea ; Lambrughi, Matteo ; Filomeni, Giuseppe</creator><creatorcontrib>Papaleo, Elena ; Tiberti, Matteo ; Arnaudi, Matteo ; Pecorari, Chiara ; Faienza, Fiorella ; Cantwell, Lisa ; Degn, Kristine ; Pacello, Francesca ; Battistoni, Andrea ; Lambrughi, Matteo ; Filomeni, Giuseppe</creatorcontrib><description>S -nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S -nitrosothiol (SNO) adduct. S -nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S -nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S -nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S- nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S -nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S -nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S -nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-023-05780-6</identifier><identifier>PMID: 37085483</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/1 ; 42 ; 631/45/612 ; 631/535/1267 ; 82 ; 82/51 ; 82/80 ; 82/83 ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cysteine ; Cysteine - metabolism ; Disulfide bonds ; HSP90 Heat-Shock Proteins - chemistry ; HSP90 Heat-Shock Proteins - metabolism ; Immunology ; Life Sciences ; Mitochondria ; Nitric oxide ; Nitric Oxide - metabolism ; Oncogene Proteins - chemistry ; Oncogene Proteins - metabolism ; Oxidation-Reduction ; Population studies ; Post-translation ; Protein Processing, Post-Translational ; Protein structure ; Proteins ; Redox properties ; S-Nitrosothiols - metabolism ; Sulfhydryl Compounds - metabolism</subject><ispartof>Cell death &amp; disease, 2023-04, Vol.14 (4), p.284-284, Article 284</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663</citedby><cites>FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663</cites><orcidid>0000-0002-2719-1412 ; 0000-0003-2529-3594 ; 0000-0001-6148-0333 ; 0000-0003-4085-7917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2804144495/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2804144495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37085483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papaleo, Elena</creatorcontrib><creatorcontrib>Tiberti, Matteo</creatorcontrib><creatorcontrib>Arnaudi, Matteo</creatorcontrib><creatorcontrib>Pecorari, Chiara</creatorcontrib><creatorcontrib>Faienza, Fiorella</creatorcontrib><creatorcontrib>Cantwell, Lisa</creatorcontrib><creatorcontrib>Degn, Kristine</creatorcontrib><creatorcontrib>Pacello, Francesca</creatorcontrib><creatorcontrib>Battistoni, Andrea</creatorcontrib><creatorcontrib>Lambrughi, Matteo</creatorcontrib><creatorcontrib>Filomeni, Giuseppe</creatorcontrib><title>TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>S -nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S -nitrosothiol (SNO) adduct. S -nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S -nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S -nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S- nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S -nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S -nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S -nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.</description><subject>101/1</subject><subject>42</subject><subject>631/45/612</subject><subject>631/535/1267</subject><subject>82</subject><subject>82/51</subject><subject>82/80</subject><subject>82/83</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cysteine</subject><subject>Cysteine - metabolism</subject><subject>Disulfide bonds</subject><subject>HSP90 Heat-Shock Proteins - chemistry</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oncogene Proteins - chemistry</subject><subject>Oncogene Proteins - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Population studies</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Redox properties</subject><subject>S-Nitrosothiols - metabolism</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhEvBXHOeEqoqPSpVAUM6WY493vUrixXaq7pk_jtOU0nLAF1sz7zz2eN6qeknwW4KZfJc44aSrMWU1blqJa_GkOqaYk5pL2T19cD6qTlPa4bIYw7QRz6sj1mLZcMmOq19X386-EvS9nnyOIR0GnX2YkE5IozFYGFBwaB_285qo09a7jEYwWz35NKIcUMqzPaC8BQTOgclpKVlw3qBw4y2gAoxgw02dYEo---slZMI-hgx-Si-qZ04PCU7v9pPqx8cPV-ef68svny7Ozy5r03CS6160xFnppOSOcUvAGSt6qU0nSqtNiZZcRzEIbXrZaA2GU4ZbzgTBnRDspLpYuTbondpHP-p4UEF7dRsIcaN0zN4MoCgjPW6McEA73mKsOQfdOot70vW2d4X1fmXt534Ea2DKUQ-PoI8zk9-qTbhWBBNKRNMVwps7Qgw_Z0hZjT4ZGAY9QZiTohI3mNEysSJ9_Y90F-Y4lb9aVMUInHeLiq4qUwaZIrj71xCsFs-o1TOqeEbdekYtf_LqYR_3JX8cUgRsFaSSmjYQ_979H-xvAPrOaA</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Papaleo, Elena</creator><creator>Tiberti, Matteo</creator><creator>Arnaudi, Matteo</creator><creator>Pecorari, Chiara</creator><creator>Faienza, Fiorella</creator><creator>Cantwell, Lisa</creator><creator>Degn, Kristine</creator><creator>Pacello, Francesca</creator><creator>Battistoni, Andrea</creator><creator>Lambrughi, Matteo</creator><creator>Filomeni, Giuseppe</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2719-1412</orcidid><orcidid>https://orcid.org/0000-0003-2529-3594</orcidid><orcidid>https://orcid.org/0000-0001-6148-0333</orcidid><orcidid>https://orcid.org/0000-0003-4085-7917</orcidid></search><sort><creationdate>20230421</creationdate><title>TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins</title><author>Papaleo, Elena ; Tiberti, Matteo ; Arnaudi, Matteo ; Pecorari, Chiara ; Faienza, Fiorella ; Cantwell, Lisa ; Degn, Kristine ; Pacello, Francesca ; Battistoni, Andrea ; Lambrughi, Matteo ; Filomeni, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>101/1</topic><topic>42</topic><topic>631/45/612</topic><topic>631/535/1267</topic><topic>82</topic><topic>82/51</topic><topic>82/80</topic><topic>82/83</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cysteine</topic><topic>Cysteine - metabolism</topic><topic>Disulfide bonds</topic><topic>HSP90 Heat-Shock Proteins - chemistry</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oncogene Proteins - chemistry</topic><topic>Oncogene Proteins - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Population studies</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Redox properties</topic><topic>S-Nitrosothiols - metabolism</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papaleo, Elena</creatorcontrib><creatorcontrib>Tiberti, Matteo</creatorcontrib><creatorcontrib>Arnaudi, Matteo</creatorcontrib><creatorcontrib>Pecorari, Chiara</creatorcontrib><creatorcontrib>Faienza, Fiorella</creatorcontrib><creatorcontrib>Cantwell, Lisa</creatorcontrib><creatorcontrib>Degn, Kristine</creatorcontrib><creatorcontrib>Pacello, Francesca</creatorcontrib><creatorcontrib>Battistoni, Andrea</creatorcontrib><creatorcontrib>Lambrughi, Matteo</creatorcontrib><creatorcontrib>Filomeni, Giuseppe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papaleo, Elena</au><au>Tiberti, Matteo</au><au>Arnaudi, Matteo</au><au>Pecorari, Chiara</au><au>Faienza, Fiorella</au><au>Cantwell, Lisa</au><au>Degn, Kristine</au><au>Pacello, Francesca</au><au>Battistoni, Andrea</au><au>Lambrughi, Matteo</au><au>Filomeni, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2023-04-21</date><risdate>2023</risdate><volume>14</volume><issue>4</issue><spage>284</spage><epage>284</epage><pages>284-284</pages><artnum>284</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>S -nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S -nitrosothiol (SNO) adduct. S -nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S -nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S -nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S- nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S -nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S -nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S -nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37085483</pmid><doi>10.1038/s41419-023-05780-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2719-1412</orcidid><orcidid>https://orcid.org/0000-0003-2529-3594</orcidid><orcidid>https://orcid.org/0000-0001-6148-0333</orcidid><orcidid>https://orcid.org/0000-0003-4085-7917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2023-04, Vol.14 (4), p.284-284, Article 284
issn 2041-4889
2041-4889
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_231b05c6fe294700a44ea7fd0b19bdbf
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 101/1
42
631/45/612
631/535/1267
82
82/51
82/80
82/83
Antibodies
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cysteine
Cysteine - metabolism
Disulfide bonds
HSP90 Heat-Shock Proteins - chemistry
HSP90 Heat-Shock Proteins - metabolism
Immunology
Life Sciences
Mitochondria
Nitric oxide
Nitric Oxide - metabolism
Oncogene Proteins - chemistry
Oncogene Proteins - metabolism
Oxidation-Reduction
Population studies
Post-translation
Protein Processing, Post-Translational
Protein structure
Proteins
Redox properties
S-Nitrosothiols - metabolism
Sulfhydryl Compounds - metabolism
title TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRAP1%20S-nitrosylation%20as%20a%20model%20of%20population-shift%20mechanism%20to%20study%20the%20effects%20of%20nitric%20oxide%20on%20redox-sensitive%20oncoproteins&rft.jtitle=Cell%20death%20&%20disease&rft.au=Papaleo,%20Elena&rft.date=2023-04-21&rft.volume=14&rft.issue=4&rft.spage=284&rft.epage=284&rft.pages=284-284&rft.artnum=284&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-023-05780-6&rft_dat=%3Cproquest_doaj_%3E2804144495%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-b671fd8f884f34d1efcd6b8ac96041584f8f8920e6acb85aaec42307436109663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804144495&rft_id=info:pmid/37085483&rfr_iscdi=true