Loading…
Mitochondrion-Targeted NIR Therapeutic Agent Suppresses Melanoma by Inducing Apoptosis and Cell Cycle Arrest via E2F/Cyclin/CDK Pathway
Malignant melanoma is the most fatal form of skin cancer worldwide, and earlier diagnosis and more effective therapies are required to improve prognosis. As a possible solution, near-infrared fluorescent heptamethine cyanine dyes have been shown to be useful for tumor diagnosis and treatment. Here,...
Saved in:
Published in: | Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-12, Vol.15 (12), p.1589 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Malignant melanoma is the most fatal form of skin cancer worldwide, and earlier diagnosis and more effective therapies are required to improve prognosis. As a possible solution, near-infrared fluorescent heptamethine cyanine dyes have been shown to be useful for tumor diagnosis and treatment. Here, we synthesized a novel theranostic agent, IR-817, a multifunctional bioactive small-molecule that has near-infrared emission, targets mitochondria in cancer cells, and has selective anti-cancer effects. In in vitro experiments, IR-817 preferentially accumulated in melanoma cells through organic anion transporting polypeptide transporters but also selectively inhibited the growth of tumor cells by inducing mitochondrial-dependent intrinsic apoptosis. Mechanistically, IR-817 caused G0/G1 cell cycle arrest by targeting the E2F/Cyclin/CDK pathway. Finally, IR-817 significantly suppressed the growth of xenograft tumors in zebrafish and mice. Immunohistochemical staining and hematoxylin and eosin staining revealed that IR-817 induced apoptosis and inhibited tumor cell proliferation without notable side effects. Therefore, mitochondrial-targeting theranostic agent IR-817 may be promising for accurate tumor diagnosis, real-time monitoring, and safe anti-cancer treatments. |
---|---|
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph15121589 |