Loading…

Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs

Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically,...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2019-05, Vol.7, p.85-85
Main Authors: Karathanasopoulos, Nikolaos, Ganghoffer, Jean-Francois
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433
cites cdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433
container_end_page 85
container_issue
container_start_page 85
container_title Frontiers in bioengineering and biotechnology
container_volume 7
creator Karathanasopoulos, Nikolaos
Ganghoffer, Jean-Francois
description Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.
doi_str_mv 10.3389/fbioe.2019.00085
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23503550b19e4b948ad1396bef4f4564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23503550b19e4b948ad1396bef4f4564</doaj_id><sourcerecordid>2232112942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</originalsourceid><addsrcrecordid>eNpdkktvEzEUhS0EolXonhWaJSwS_JwZb5BCHzRSRBcUtpbHc526mrGDPRPBqn-9niRULStb957z2dc-CL0neMFYLT_bxgVYUEzkAmNci1folFJZzjmpxetn-xN0ltJ9lhAqKlHTt-iEEcI4kewUPVz-2XbBDc5vil8umQCdToMzRa5DdD34QXfFTZMg7vTggk-F9m3xfexz1-TWD9eP3bEzhGLlLcTiqwt99k6cZRycdcZl6S34NvjiyjVZcgHJbXx6h95Y3SU4O64z9PPq8vb8er6--bY6X67nhstymANtjaSEYsMoJ7wVRgO2tsLY1pJVpeG0xBW3QKwRlIiWgqgJ1ZJKY0vO2AytDtw26Hu1zZPp-FcF7dS-EOJG6XxT04GiTGAmBG6IBN5IXuuWMFk2YLnlIsNm6MuBtR2bHlqT3yjq7gX0Zce7O7UJO1WKCVRlwKcD4O4_2_VyraYaZvmHSil3JGs_Hg-L4fcIaVB9_iboOu0hjElRyighVHKapfggNTGkFME-sQlWU2TUPjJqiozaRyZbPjwf5cnwLyDsEe3bvoM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232112942</pqid></control><display><type>article</type><title>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</title><source>PubMed Central</source><creator>Karathanasopoulos, Nikolaos ; Ganghoffer, Jean-Francois</creator><creatorcontrib>Karathanasopoulos, Nikolaos ; Ganghoffer, Jean-Francois</creatorcontrib><description>Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2019.00085</identifier><identifier>PMID: 31134193</identifier><language>eng</language><publisher>Switzerland: Frontiers</publisher><subject>Bioengineering and Biotechnology ; biomaterials ; Engineering Sciences ; fibers ; Mechanics ; relaxation ; tendon ; tissue engineering ; viscoelasticity</subject><ispartof>Frontiers in bioengineering and biotechnology, 2019-05, Vol.7, p.85-85</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 Karathanasopoulos and Ganghoffer. 2019 Karathanasopoulos and Ganghoffer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</citedby><cites>FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</cites><orcidid>0000-0002-7947-0587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31134193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03311699$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Karathanasopoulos, Nikolaos</creatorcontrib><creatorcontrib>Ganghoffer, Jean-Francois</creatorcontrib><title>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.</description><subject>Bioengineering and Biotechnology</subject><subject>biomaterials</subject><subject>Engineering Sciences</subject><subject>fibers</subject><subject>Mechanics</subject><subject>relaxation</subject><subject>tendon</subject><subject>tissue engineering</subject><subject>viscoelasticity</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhS0EolXonhWaJSwS_JwZb5BCHzRSRBcUtpbHc526mrGDPRPBqn-9niRULStb957z2dc-CL0neMFYLT_bxgVYUEzkAmNci1folFJZzjmpxetn-xN0ltJ9lhAqKlHTt-iEEcI4kewUPVz-2XbBDc5vil8umQCdToMzRa5DdD34QXfFTZMg7vTggk-F9m3xfexz1-TWD9eP3bEzhGLlLcTiqwt99k6cZRycdcZl6S34NvjiyjVZcgHJbXx6h95Y3SU4O64z9PPq8vb8er6--bY6X67nhstymANtjaSEYsMoJ7wVRgO2tsLY1pJVpeG0xBW3QKwRlIiWgqgJ1ZJKY0vO2AytDtw26Hu1zZPp-FcF7dS-EOJG6XxT04GiTGAmBG6IBN5IXuuWMFk2YLnlIsNm6MuBtR2bHlqT3yjq7gX0Zce7O7UJO1WKCVRlwKcD4O4_2_VyraYaZvmHSil3JGs_Hg-L4fcIaVB9_iboOu0hjElRyighVHKapfggNTGkFME-sQlWU2TUPjJqiozaRyZbPjwf5cnwLyDsEe3bvoM</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Karathanasopoulos, Nikolaos</creator><creator>Ganghoffer, Jean-Francois</creator><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid></search><sort><creationdate>20190507</creationdate><title>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</title><author>Karathanasopoulos, Nikolaos ; Ganghoffer, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioengineering and Biotechnology</topic><topic>biomaterials</topic><topic>Engineering Sciences</topic><topic>fibers</topic><topic>Mechanics</topic><topic>relaxation</topic><topic>tendon</topic><topic>tissue engineering</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karathanasopoulos, Nikolaos</creatorcontrib><creatorcontrib>Ganghoffer, Jean-Francois</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karathanasopoulos, Nikolaos</au><au>Ganghoffer, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>7</volume><spage>85</spage><epage>85</epage><pages>85-85</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.</abstract><cop>Switzerland</cop><pub>Frontiers</pub><pmid>31134193</pmid><doi>10.3389/fbioe.2019.00085</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-4185
ispartof Frontiers in bioengineering and biotechnology, 2019-05, Vol.7, p.85-85
issn 2296-4185
2296-4185
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_23503550b19e4b948ad1396bef4f4564
source PubMed Central
subjects Bioengineering and Biotechnology
biomaterials
Engineering Sciences
fibers
Mechanics
relaxation
tendon
tissue engineering
viscoelasticity
title Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Viscoelastic%20Experimental%20Observations%20and%20Numerical%20Simulations%20to%20Infer%20Biomimetic%20Artificial%20Tendon%20Fiber%20Designs&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Karathanasopoulos,%20Nikolaos&rft.date=2019-05-07&rft.volume=7&rft.spage=85&rft.epage=85&rft.pages=85-85&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2019.00085&rft_dat=%3Cproquest_doaj_%3E2232112942%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232112942&rft_id=info:pmid/31134193&rfr_iscdi=true