Loading…
Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs
Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically,...
Saved in:
Published in: | Frontiers in bioengineering and biotechnology 2019-05, Vol.7, p.85-85 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433 |
container_end_page | 85 |
container_issue | |
container_start_page | 85 |
container_title | Frontiers in bioengineering and biotechnology |
container_volume | 7 |
creator | Karathanasopoulos, Nikolaos Ganghoffer, Jean-Francois |
description | Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds. |
doi_str_mv | 10.3389/fbioe.2019.00085 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23503550b19e4b948ad1396bef4f4564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23503550b19e4b948ad1396bef4f4564</doaj_id><sourcerecordid>2232112942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</originalsourceid><addsrcrecordid>eNpdkktvEzEUhS0EolXonhWaJSwS_JwZb5BCHzRSRBcUtpbHc526mrGDPRPBqn-9niRULStb957z2dc-CL0neMFYLT_bxgVYUEzkAmNci1folFJZzjmpxetn-xN0ltJ9lhAqKlHTt-iEEcI4kewUPVz-2XbBDc5vil8umQCdToMzRa5DdD34QXfFTZMg7vTggk-F9m3xfexz1-TWD9eP3bEzhGLlLcTiqwt99k6cZRycdcZl6S34NvjiyjVZcgHJbXx6h95Y3SU4O64z9PPq8vb8er6--bY6X67nhstymANtjaSEYsMoJ7wVRgO2tsLY1pJVpeG0xBW3QKwRlIiWgqgJ1ZJKY0vO2AytDtw26Hu1zZPp-FcF7dS-EOJG6XxT04GiTGAmBG6IBN5IXuuWMFk2YLnlIsNm6MuBtR2bHlqT3yjq7gX0Zce7O7UJO1WKCVRlwKcD4O4_2_VyraYaZvmHSil3JGs_Hg-L4fcIaVB9_iboOu0hjElRyighVHKapfggNTGkFME-sQlWU2TUPjJqiozaRyZbPjwf5cnwLyDsEe3bvoM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232112942</pqid></control><display><type>article</type><title>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</title><source>PubMed Central</source><creator>Karathanasopoulos, Nikolaos ; Ganghoffer, Jean-Francois</creator><creatorcontrib>Karathanasopoulos, Nikolaos ; Ganghoffer, Jean-Francois</creatorcontrib><description>Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2019.00085</identifier><identifier>PMID: 31134193</identifier><language>eng</language><publisher>Switzerland: Frontiers</publisher><subject>Bioengineering and Biotechnology ; biomaterials ; Engineering Sciences ; fibers ; Mechanics ; relaxation ; tendon ; tissue engineering ; viscoelasticity</subject><ispartof>Frontiers in bioengineering and biotechnology, 2019-05, Vol.7, p.85-85</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2019 Karathanasopoulos and Ganghoffer. 2019 Karathanasopoulos and Ganghoffer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</citedby><cites>FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</cites><orcidid>0000-0002-7947-0587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513967/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513967/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31134193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03311699$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Karathanasopoulos, Nikolaos</creatorcontrib><creatorcontrib>Ganghoffer, Jean-Francois</creatorcontrib><title>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.</description><subject>Bioengineering and Biotechnology</subject><subject>biomaterials</subject><subject>Engineering Sciences</subject><subject>fibers</subject><subject>Mechanics</subject><subject>relaxation</subject><subject>tendon</subject><subject>tissue engineering</subject><subject>viscoelasticity</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhS0EolXonhWaJSwS_JwZb5BCHzRSRBcUtpbHc526mrGDPRPBqn-9niRULStb957z2dc-CL0neMFYLT_bxgVYUEzkAmNci1folFJZzjmpxetn-xN0ltJ9lhAqKlHTt-iEEcI4kewUPVz-2XbBDc5vil8umQCdToMzRa5DdD34QXfFTZMg7vTggk-F9m3xfexz1-TWD9eP3bEzhGLlLcTiqwt99k6cZRycdcZl6S34NvjiyjVZcgHJbXx6h95Y3SU4O64z9PPq8vb8er6--bY6X67nhstymANtjaSEYsMoJ7wVRgO2tsLY1pJVpeG0xBW3QKwRlIiWgqgJ1ZJKY0vO2AytDtw26Hu1zZPp-FcF7dS-EOJG6XxT04GiTGAmBG6IBN5IXuuWMFk2YLnlIsNm6MuBtR2bHlqT3yjq7gX0Zce7O7UJO1WKCVRlwKcD4O4_2_VyraYaZvmHSil3JGs_Hg-L4fcIaVB9_iboOu0hjElRyighVHKapfggNTGkFME-sQlWU2TUPjJqiozaRyZbPjwf5cnwLyDsEe3bvoM</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Karathanasopoulos, Nikolaos</creator><creator>Ganghoffer, Jean-Francois</creator><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid></search><sort><creationdate>20190507</creationdate><title>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</title><author>Karathanasopoulos, Nikolaos ; Ganghoffer, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioengineering and Biotechnology</topic><topic>biomaterials</topic><topic>Engineering Sciences</topic><topic>fibers</topic><topic>Mechanics</topic><topic>relaxation</topic><topic>tendon</topic><topic>tissue engineering</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karathanasopoulos, Nikolaos</creatorcontrib><creatorcontrib>Ganghoffer, Jean-Francois</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karathanasopoulos, Nikolaos</au><au>Ganghoffer, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>7</volume><spage>85</spage><epage>85</epage><pages>85-85</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Designing biomimetic artificial tendons requires a thorough, data-based understanding of the tendon's inner material properties. The current work exploits viscoelastic experimental observations at the tendon fascicle scale, making use of mechanical and data analysis methods. More specifically, based on reported elastic, volumetric and relaxation fascicle scale properties, we infer most probable, mechanically compatible material attributes at the fiber scale. In particular, the work provides pairs of elastic and viscous fiber-scale moduli, which can reproduce the upper scale tendon mechanics. The computed range of values for the fiber-scale tendon viscosity attest to the substantial stress relaxation capabilities of tendons. More importantly, the reported mechanical parameters constitute a basis for the design of tendon-specific restoration materials, such as fiber-based, engineering scaffolds.</abstract><cop>Switzerland</cop><pub>Frontiers</pub><pmid>31134193</pmid><doi>10.3389/fbioe.2019.00085</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7947-0587</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-4185 |
ispartof | Frontiers in bioengineering and biotechnology, 2019-05, Vol.7, p.85-85 |
issn | 2296-4185 2296-4185 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_23503550b19e4b948ad1396bef4f4564 |
source | PubMed Central |
subjects | Bioengineering and Biotechnology biomaterials Engineering Sciences fibers Mechanics relaxation tendon tissue engineering viscoelasticity |
title | Exploiting Viscoelastic Experimental Observations and Numerical Simulations to Infer Biomimetic Artificial Tendon Fiber Designs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Viscoelastic%20Experimental%20Observations%20and%20Numerical%20Simulations%20to%20Infer%20Biomimetic%20Artificial%20Tendon%20Fiber%20Designs&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Karathanasopoulos,%20Nikolaos&rft.date=2019-05-07&rft.volume=7&rft.spage=85&rft.epage=85&rft.pages=85-85&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2019.00085&rft_dat=%3Cproquest_doaj_%3E2232112942%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-e2dc92120c32414d5cae0ff700f89376c426074fe1fc5215d2e5812a929cf6433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232112942&rft_id=info:pmid/31134193&rfr_iscdi=true |