Loading…

Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses

A bstract We propose to generate non-universal gaugino masses in SU(5) Grand Unified Theory (GUT) with the generalized Planck-scale mediation SUSY breaking mechanism, in which the non-universality arises from proper wavefunction normalization with lowest component VEVs of various high dimensional re...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2018-12, Vol.2018 (12), p.1-31, Article 41
Main Authors: Wang, Fei, Wang, Kun, Yang, Jin Min, Zhu, Jingya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3
cites cdi_FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3
container_end_page 31
container_issue 12
container_start_page 1
container_title The journal of high energy physics
container_volume 2018
creator Wang, Fei
Wang, Kun
Yang, Jin Min
Zhu, Jingya
description A bstract We propose to generate non-universal gaugino masses in SU(5) Grand Unified Theory (GUT) with the generalized Planck-scale mediation SUSY breaking mechanism, in which the non-universality arises from proper wavefunction normalization with lowest component VEVs of various high dimensional representations of the Higgs fields of SU(5) and an unique F-term VEV by the singlet. Different predictions on gaugino mass ratios with respect to widely studied scenarios are given. The gluino-SUGRA-like scenario, where gluinos are much heavier than winos, bino and universal scalar masses, can be easily realized with appropriate combinations of such high-representation Higgs fields. With six GUT-scale free parameters in our scenario, we can solve elegantly the tension between mSUGRA and the present experimental results, including the muon g-2, the dark matter (DM) relic density and the direct sparticle search bounds from the LHC. Taking into account the current constraints in our numerical scan, we have the following observations: (i) The large-tan β (≳35) samples with a moderate M 3 (∼5 TeV), a small | A 0 /M 3 | (≲0 . 4) and a small m A (≲4 TeV) are favoured to generate a 125 GeV SM-like Higgs and predict a large muon g-2, while the stop mass and μ parameter, mainly determined by | M 3 | (≫ M 0 , | M 1 | , | M 2 |), can be about 6 TeV; (ii) The moderate-tan β (35 ∼ 40) samples with a negative M 3 can have a light smuon (250 ∼ 450 GeV) but a heavy stau (≳1 TeV), which predict a large muon g-2 but a small Br ( B s → μ + μ − ); (iii) To obtain the right DM relic density, the annihilation mechanisms should be stau exchange, stau coannihilation, chargino coannihilation, slepton annihilation and the combination of two or three of them; (iv) To obtain the right DM relic density, the spin-independent DM-nucleon cross section is typically much smaller than the present limits of XENON1T 2018 and also an order of magnitude lower than the future detection sensitivity of LZ and XENONnT experiments.
doi_str_mv 10.1007/JHEP12(2018)041
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2358e966d0244d338fa98f3f8f4f1800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2358e966d0244d338fa98f3f8f4f1800</doaj_id><sourcerecordid>2156781234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3</originalsourceid><addsrcrecordid>eNp1kb1PwzAQxSMEEuVjZrXEAkPAn4k9oqpAEQhQYbZcx05dpXaxE6D_PYEgYGG60917vzvpZdkRgmcIwvL85nrygPAJhoifQoq2shGCWOSclmL7T7-b7aW0hBAxJOAoe5yF5tX5GrQLA1Zd8KDOMVA-rFSzAc6D8d1sdgfMe2t8cv36zbUL4IPPO-9eTUyqAbXqaucDWKmUTDrIdqxqkjn8rvvZ8-XkaXyd395fTccXt7mmqGxzyygTxCBIUEk54wQqpqkgJbYFJ4UptC7ZnIl5ISqK59RwXlKhK404MRpbsp9NB24V1FKuo1upuJFBOfk1CLGWKrZON0ZiwrgRRVFBTGlFCLdKcEsst9QiDmHPOh5Y6xheOpNauQxd9P37EiNWlBxhQnvV-aDSMaQUjf25iqD8zEAOGcjPDGSfQe-AgyP1Sl-b-Mv9z_IBAniGIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156781234</pqid></control><display><type>article</type><title>Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wang, Fei ; Wang, Kun ; Yang, Jin Min ; Zhu, Jingya</creator><creatorcontrib>Wang, Fei ; Wang, Kun ; Yang, Jin Min ; Zhu, Jingya</creatorcontrib><description>A bstract We propose to generate non-universal gaugino masses in SU(5) Grand Unified Theory (GUT) with the generalized Planck-scale mediation SUSY breaking mechanism, in which the non-universality arises from proper wavefunction normalization with lowest component VEVs of various high dimensional representations of the Higgs fields of SU(5) and an unique F-term VEV by the singlet. Different predictions on gaugino mass ratios with respect to widely studied scenarios are given. The gluino-SUGRA-like scenario, where gluinos are much heavier than winos, bino and universal scalar masses, can be easily realized with appropriate combinations of such high-representation Higgs fields. With six GUT-scale free parameters in our scenario, we can solve elegantly the tension between mSUGRA and the present experimental results, including the muon g-2, the dark matter (DM) relic density and the direct sparticle search bounds from the LHC. Taking into account the current constraints in our numerical scan, we have the following observations: (i) The large-tan β (≳35) samples with a moderate M 3 (∼5 TeV), a small | A 0 /M 3 | (≲0 . 4) and a small m A (≲4 TeV) are favoured to generate a 125 GeV SM-like Higgs and predict a large muon g-2, while the stop mass and μ parameter, mainly determined by | M 3 | (≫ M 0 , | M 1 | , | M 2 |), can be about 6 TeV; (ii) The moderate-tan β (35 ∼ 40) samples with a negative M 3 can have a light smuon (250 ∼ 450 GeV) but a heavy stau (≳1 TeV), which predict a large muon g-2 but a small Br ( B s → μ + μ − ); (iii) To obtain the right DM relic density, the annihilation mechanisms should be stau exchange, stau coannihilation, chargino coannihilation, slepton annihilation and the combination of two or three of them; (iv) To obtain the right DM relic density, the spin-independent DM-nucleon cross section is typically much smaller than the present limits of XENON1T 2018 and also an order of magnitude lower than the future detection sensitivity of LZ and XENONnT experiments.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2018)041</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Dark matter ; Density ; Elementary Particles ; Grand unified theory ; High energy physics ; Mass ratios ; Parameters ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Representations ; String Theory ; Supersymmetry Phenomenology</subject><ispartof>The journal of high energy physics, 2018-12, Vol.2018 (12), p.1-31, Article 41</ispartof><rights>The Author(s) 2018</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3</citedby><cites>FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3</cites><orcidid>0000-0002-8631-5649 ; 0000-0002-4291-2724 ; 0000-0001-9427-7411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2156781234/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2156781234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Yang, Jin Min</creatorcontrib><creatorcontrib>Zhu, Jingya</creatorcontrib><title>Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We propose to generate non-universal gaugino masses in SU(5) Grand Unified Theory (GUT) with the generalized Planck-scale mediation SUSY breaking mechanism, in which the non-universality arises from proper wavefunction normalization with lowest component VEVs of various high dimensional representations of the Higgs fields of SU(5) and an unique F-term VEV by the singlet. Different predictions on gaugino mass ratios with respect to widely studied scenarios are given. The gluino-SUGRA-like scenario, where gluinos are much heavier than winos, bino and universal scalar masses, can be easily realized with appropriate combinations of such high-representation Higgs fields. With six GUT-scale free parameters in our scenario, we can solve elegantly the tension between mSUGRA and the present experimental results, including the muon g-2, the dark matter (DM) relic density and the direct sparticle search bounds from the LHC. Taking into account the current constraints in our numerical scan, we have the following observations: (i) The large-tan β (≳35) samples with a moderate M 3 (∼5 TeV), a small | A 0 /M 3 | (≲0 . 4) and a small m A (≲4 TeV) are favoured to generate a 125 GeV SM-like Higgs and predict a large muon g-2, while the stop mass and μ parameter, mainly determined by | M 3 | (≫ M 0 , | M 1 | , | M 2 |), can be about 6 TeV; (ii) The moderate-tan β (35 ∼ 40) samples with a negative M 3 can have a light smuon (250 ∼ 450 GeV) but a heavy stau (≳1 TeV), which predict a large muon g-2 but a small Br ( B s → μ + μ − ); (iii) To obtain the right DM relic density, the annihilation mechanisms should be stau exchange, stau coannihilation, chargino coannihilation, slepton annihilation and the combination of two or three of them; (iv) To obtain the right DM relic density, the spin-independent DM-nucleon cross section is typically much smaller than the present limits of XENON1T 2018 and also an order of magnitude lower than the future detection sensitivity of LZ and XENONnT experiments.</description><subject>Classical and Quantum Gravitation</subject><subject>Dark matter</subject><subject>Density</subject><subject>Elementary Particles</subject><subject>Grand unified theory</subject><subject>High energy physics</subject><subject>Mass ratios</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Representations</subject><subject>String Theory</subject><subject>Supersymmetry Phenomenology</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kb1PwzAQxSMEEuVjZrXEAkPAn4k9oqpAEQhQYbZcx05dpXaxE6D_PYEgYGG60917vzvpZdkRgmcIwvL85nrygPAJhoifQoq2shGCWOSclmL7T7-b7aW0hBAxJOAoe5yF5tX5GrQLA1Zd8KDOMVA-rFSzAc6D8d1sdgfMe2t8cv36zbUL4IPPO-9eTUyqAbXqaucDWKmUTDrIdqxqkjn8rvvZ8-XkaXyd395fTccXt7mmqGxzyygTxCBIUEk54wQqpqkgJbYFJ4UptC7ZnIl5ISqK59RwXlKhK404MRpbsp9NB24V1FKuo1upuJFBOfk1CLGWKrZON0ZiwrgRRVFBTGlFCLdKcEsst9QiDmHPOh5Y6xheOpNauQxd9P37EiNWlBxhQnvV-aDSMaQUjf25iqD8zEAOGcjPDGSfQe-AgyP1Sl-b-Mv9z_IBAniGIw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Wang, Fei</creator><creator>Wang, Kun</creator><creator>Yang, Jin Min</creator><creator>Zhu, Jingya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8631-5649</orcidid><orcidid>https://orcid.org/0000-0002-4291-2724</orcidid><orcidid>https://orcid.org/0000-0001-9427-7411</orcidid></search><sort><creationdate>20181201</creationdate><title>Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses</title><author>Wang, Fei ; Wang, Kun ; Yang, Jin Min ; Zhu, Jingya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Dark matter</topic><topic>Density</topic><topic>Elementary Particles</topic><topic>Grand unified theory</topic><topic>High energy physics</topic><topic>Mass ratios</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Representations</topic><topic>String Theory</topic><topic>Supersymmetry Phenomenology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Yang, Jin Min</creatorcontrib><creatorcontrib>Zhu, Jingya</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Wang, Kun</au><au>Yang, Jin Min</au><au>Zhu, Jingya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>2018</volume><issue>12</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><artnum>41</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We propose to generate non-universal gaugino masses in SU(5) Grand Unified Theory (GUT) with the generalized Planck-scale mediation SUSY breaking mechanism, in which the non-universality arises from proper wavefunction normalization with lowest component VEVs of various high dimensional representations of the Higgs fields of SU(5) and an unique F-term VEV by the singlet. Different predictions on gaugino mass ratios with respect to widely studied scenarios are given. The gluino-SUGRA-like scenario, where gluinos are much heavier than winos, bino and universal scalar masses, can be easily realized with appropriate combinations of such high-representation Higgs fields. With six GUT-scale free parameters in our scenario, we can solve elegantly the tension between mSUGRA and the present experimental results, including the muon g-2, the dark matter (DM) relic density and the direct sparticle search bounds from the LHC. Taking into account the current constraints in our numerical scan, we have the following observations: (i) The large-tan β (≳35) samples with a moderate M 3 (∼5 TeV), a small | A 0 /M 3 | (≲0 . 4) and a small m A (≲4 TeV) are favoured to generate a 125 GeV SM-like Higgs and predict a large muon g-2, while the stop mass and μ parameter, mainly determined by | M 3 | (≫ M 0 , | M 1 | , | M 2 |), can be about 6 TeV; (ii) The moderate-tan β (35 ∼ 40) samples with a negative M 3 can have a light smuon (250 ∼ 450 GeV) but a heavy stau (≳1 TeV), which predict a large muon g-2 but a small Br ( B s → μ + μ − ); (iii) To obtain the right DM relic density, the annihilation mechanisms should be stau exchange, stau coannihilation, chargino coannihilation, slepton annihilation and the combination of two or three of them; (iv) To obtain the right DM relic density, the spin-independent DM-nucleon cross section is typically much smaller than the present limits of XENON1T 2018 and also an order of magnitude lower than the future detection sensitivity of LZ and XENONnT experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2018)041</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8631-5649</orcidid><orcidid>https://orcid.org/0000-0002-4291-2724</orcidid><orcidid>https://orcid.org/0000-0001-9427-7411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2018-12, Vol.2018 (12), p.1-31, Article 41
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2358e966d0244d338fa98f3f8f4f1800
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Classical and Quantum Gravitation
Dark matter
Density
Elementary Particles
Grand unified theory
High energy physics
Mass ratios
Parameters
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Representations
String Theory
Supersymmetry Phenomenology
title Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20muon%20g-2%20anomaly%20in%20CMSSM%20extension%20with%20non-universal%20gaugino%20masses&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Wang,%20Fei&rft.date=2018-12-01&rft.volume=2018&rft.issue=12&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.artnum=41&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2018)041&rft_dat=%3Cproquest_doaj_%3E2156781234%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-f54593e10317485830a5c49372f6836e6cc75b59b69d42b4e88749cdc183ec2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2156781234&rft_id=info:pmid/&rfr_iscdi=true