Loading…

Induction Skull Melting of Ti-6Al-4V: Process Control and Efficiency Optimization

Titanium investment casting is one of the leading and most efficient near-net-shape manufacturing processes, since complex shape components are possible to obtain with a very low amount of material waste. But melting these reactive alloys implies the usage of specific melting technologies such as th...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2019-05, Vol.9 (5), p.539
Main Authors: Chamorro, Xabier, Herrero-Dorca, Nuria, Bernal, Daniel, Hurtado, Iñaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103
cites cdi_FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103
container_end_page
container_issue 5
container_start_page 539
container_title Metals (Basel )
container_volume 9
creator Chamorro, Xabier
Herrero-Dorca, Nuria
Bernal, Daniel
Hurtado, Iñaki
description Titanium investment casting is one of the leading and most efficient near-net-shape manufacturing processes, since complex shape components are possible to obtain with a very low amount of material waste. But melting these reactive alloys implies the usage of specific melting technologies such as the Induction Skull Melting (ISM) method. In this work the ISM was extensively studied with the aim of deepening the characteristics of this specific melting method and improving the too low energy efficiency and overall process performance. A 16 segment copper crucible and 3 turns coil was employed for the melting of 1 kg of Ti-6Al-4V alloy. Through the calorimetric balance, real-time evolution of the process parameters and power losses arising from the crucible and coil sub-assemblies was displayed. Results revealed the impact of coil working conditions in the overall ISM thermal efficiency and titanium melt properties, revealing the use of these conditions as an effective optimization strategy. This unstudied melting control method allowed more heat into charge and 13% efficiency enhancement; leading to a shorter melting process, less energy consumption and increased melt superheat, which reached 49 °C. The experimental data published in this paper represent a valuable empiric reference for the development and validation of current and future induction heating models.
doi_str_mv 10.3390/met9050539
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2364f53b6a5c46efb5956b22996e6f6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2364f53b6a5c46efb5956b22996e6f6b</doaj_id><sourcerecordid>2548990186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103</originalsourceid><addsrcrecordid>eNpNkUFLAzEQhRdRsNRe_AUBb8JqdrMz23grpWqhomL1GpJsUlK3m5rsHuqvd2tFncsMw-N7D16SnGf0ijFOrzem5RQoMH6UDHJaQlqUNDv-d58moxjXtJ9xjpTzQfI8b6pOt8435OW9q2vyYOrWNSviLVm6FCd1WrzdkKfgtYmRTH3TBl8T2VRkZq3TzjR6Rx63rdu4T7nnnCUnVtbRjH72MHm9nS2n9-ni8W4-nSxSzTBrU7S6RM5UNQag0lLkIGWBgFKXJVhTZlhwZRjKEitFKwAlM8DcaJqDzigbJvMDt_JyLbbBbWTYCS-d-H74sBIytE7XRuQMCwtMoQRdoLEKOKDKc87RoEXVsy4OrG3wH52JrVj7LjR9fJFDMeacZmPsVZcHlQ4-xmDsr2tGxb4B8dcA-wJ-XHaM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548990186</pqid></control><display><type>article</type><title>Induction Skull Melting of Ti-6Al-4V: Process Control and Efficiency Optimization</title><source>Publicly Available Content Database</source><creator>Chamorro, Xabier ; Herrero-Dorca, Nuria ; Bernal, Daniel ; Hurtado, Iñaki</creator><creatorcontrib>Chamorro, Xabier ; Herrero-Dorca, Nuria ; Bernal, Daniel ; Hurtado, Iñaki</creatorcontrib><description>Titanium investment casting is one of the leading and most efficient near-net-shape manufacturing processes, since complex shape components are possible to obtain with a very low amount of material waste. But melting these reactive alloys implies the usage of specific melting technologies such as the Induction Skull Melting (ISM) method. In this work the ISM was extensively studied with the aim of deepening the characteristics of this specific melting method and improving the too low energy efficiency and overall process performance. A 16 segment copper crucible and 3 turns coil was employed for the melting of 1 kg of Ti-6Al-4V alloy. Through the calorimetric balance, real-time evolution of the process parameters and power losses arising from the crucible and coil sub-assemblies was displayed. Results revealed the impact of coil working conditions in the overall ISM thermal efficiency and titanium melt properties, revealing the use of these conditions as an effective optimization strategy. This unstudied melting control method allowed more heat into charge and 13% efficiency enhancement; leading to a shorter melting process, less energy consumption and increased melt superheat, which reached 49 °C. The experimental data published in this paper represent a valuable empiric reference for the development and validation of current and future induction heating models.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met9050539</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Charge efficiency ; Coils ; Cold ; cold crucible ; Control methods ; Cost control ; Crucibles ; Data processing ; Efficiency ; Energy consumption ; Heat ; Induction heating ; Investment casting ; Manufacturing ; melting ; Near net shaping ; Optimization ; Power supply ; Process controls ; Process parameters ; Skull melting ; superheat ; Thermodynamic efficiency ; Titanium ; Titanium base alloys ; Water temperature</subject><ispartof>Metals (Basel ), 2019-05, Vol.9 (5), p.539</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103</citedby><cites>FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103</cites><orcidid>0000-0002-1083-9462 ; 0000-0002-7117-5030 ; 0000-0003-4602-8685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548990186/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548990186?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Chamorro, Xabier</creatorcontrib><creatorcontrib>Herrero-Dorca, Nuria</creatorcontrib><creatorcontrib>Bernal, Daniel</creatorcontrib><creatorcontrib>Hurtado, Iñaki</creatorcontrib><title>Induction Skull Melting of Ti-6Al-4V: Process Control and Efficiency Optimization</title><title>Metals (Basel )</title><description>Titanium investment casting is one of the leading and most efficient near-net-shape manufacturing processes, since complex shape components are possible to obtain with a very low amount of material waste. But melting these reactive alloys implies the usage of specific melting technologies such as the Induction Skull Melting (ISM) method. In this work the ISM was extensively studied with the aim of deepening the characteristics of this specific melting method and improving the too low energy efficiency and overall process performance. A 16 segment copper crucible and 3 turns coil was employed for the melting of 1 kg of Ti-6Al-4V alloy. Through the calorimetric balance, real-time evolution of the process parameters and power losses arising from the crucible and coil sub-assemblies was displayed. Results revealed the impact of coil working conditions in the overall ISM thermal efficiency and titanium melt properties, revealing the use of these conditions as an effective optimization strategy. This unstudied melting control method allowed more heat into charge and 13% efficiency enhancement; leading to a shorter melting process, less energy consumption and increased melt superheat, which reached 49 °C. The experimental data published in this paper represent a valuable empiric reference for the development and validation of current and future induction heating models.</description><subject>Alloys</subject><subject>Charge efficiency</subject><subject>Coils</subject><subject>Cold</subject><subject>cold crucible</subject><subject>Control methods</subject><subject>Cost control</subject><subject>Crucibles</subject><subject>Data processing</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Heat</subject><subject>Induction heating</subject><subject>Investment casting</subject><subject>Manufacturing</subject><subject>melting</subject><subject>Near net shaping</subject><subject>Optimization</subject><subject>Power supply</subject><subject>Process controls</subject><subject>Process parameters</subject><subject>Skull melting</subject><subject>superheat</subject><subject>Thermodynamic efficiency</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Water temperature</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFLAzEQhRdRsNRe_AUBb8JqdrMz23grpWqhomL1GpJsUlK3m5rsHuqvd2tFncsMw-N7D16SnGf0ijFOrzem5RQoMH6UDHJaQlqUNDv-d58moxjXtJ9xjpTzQfI8b6pOt8435OW9q2vyYOrWNSviLVm6FCd1WrzdkKfgtYmRTH3TBl8T2VRkZq3TzjR6Rx63rdu4T7nnnCUnVtbRjH72MHm9nS2n9-ni8W4-nSxSzTBrU7S6RM5UNQag0lLkIGWBgFKXJVhTZlhwZRjKEitFKwAlM8DcaJqDzigbJvMDt_JyLbbBbWTYCS-d-H74sBIytE7XRuQMCwtMoQRdoLEKOKDKc87RoEXVsy4OrG3wH52JrVj7LjR9fJFDMeacZmPsVZcHlQ4-xmDsr2tGxb4B8dcA-wJ-XHaM</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Chamorro, Xabier</creator><creator>Herrero-Dorca, Nuria</creator><creator>Bernal, Daniel</creator><creator>Hurtado, Iñaki</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1083-9462</orcidid><orcidid>https://orcid.org/0000-0002-7117-5030</orcidid><orcidid>https://orcid.org/0000-0003-4602-8685</orcidid></search><sort><creationdate>20190501</creationdate><title>Induction Skull Melting of Ti-6Al-4V: Process Control and Efficiency Optimization</title><author>Chamorro, Xabier ; Herrero-Dorca, Nuria ; Bernal, Daniel ; Hurtado, Iñaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Charge efficiency</topic><topic>Coils</topic><topic>Cold</topic><topic>cold crucible</topic><topic>Control methods</topic><topic>Cost control</topic><topic>Crucibles</topic><topic>Data processing</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Heat</topic><topic>Induction heating</topic><topic>Investment casting</topic><topic>Manufacturing</topic><topic>melting</topic><topic>Near net shaping</topic><topic>Optimization</topic><topic>Power supply</topic><topic>Process controls</topic><topic>Process parameters</topic><topic>Skull melting</topic><topic>superheat</topic><topic>Thermodynamic efficiency</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamorro, Xabier</creatorcontrib><creatorcontrib>Herrero-Dorca, Nuria</creatorcontrib><creatorcontrib>Bernal, Daniel</creatorcontrib><creatorcontrib>Hurtado, Iñaki</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamorro, Xabier</au><au>Herrero-Dorca, Nuria</au><au>Bernal, Daniel</au><au>Hurtado, Iñaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction Skull Melting of Ti-6Al-4V: Process Control and Efficiency Optimization</atitle><jtitle>Metals (Basel )</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>539</spage><pages>539-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Titanium investment casting is one of the leading and most efficient near-net-shape manufacturing processes, since complex shape components are possible to obtain with a very low amount of material waste. But melting these reactive alloys implies the usage of specific melting technologies such as the Induction Skull Melting (ISM) method. In this work the ISM was extensively studied with the aim of deepening the characteristics of this specific melting method and improving the too low energy efficiency and overall process performance. A 16 segment copper crucible and 3 turns coil was employed for the melting of 1 kg of Ti-6Al-4V alloy. Through the calorimetric balance, real-time evolution of the process parameters and power losses arising from the crucible and coil sub-assemblies was displayed. Results revealed the impact of coil working conditions in the overall ISM thermal efficiency and titanium melt properties, revealing the use of these conditions as an effective optimization strategy. This unstudied melting control method allowed more heat into charge and 13% efficiency enhancement; leading to a shorter melting process, less energy consumption and increased melt superheat, which reached 49 °C. The experimental data published in this paper represent a valuable empiric reference for the development and validation of current and future induction heating models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met9050539</doi><orcidid>https://orcid.org/0000-0002-1083-9462</orcidid><orcidid>https://orcid.org/0000-0002-7117-5030</orcidid><orcidid>https://orcid.org/0000-0003-4602-8685</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2019-05, Vol.9 (5), p.539
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2364f53b6a5c46efb5956b22996e6f6b
source Publicly Available Content Database
subjects Alloys
Charge efficiency
Coils
Cold
cold crucible
Control methods
Cost control
Crucibles
Data processing
Efficiency
Energy consumption
Heat
Induction heating
Investment casting
Manufacturing
melting
Near net shaping
Optimization
Power supply
Process controls
Process parameters
Skull melting
superheat
Thermodynamic efficiency
Titanium
Titanium base alloys
Water temperature
title Induction Skull Melting of Ti-6Al-4V: Process Control and Efficiency Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20Skull%20Melting%20of%20Ti-6Al-4V:%20Process%20Control%20and%20Efficiency%20Optimization&rft.jtitle=Metals%20(Basel%20)&rft.au=Chamorro,%20Xabier&rft.date=2019-05-01&rft.volume=9&rft.issue=5&rft.spage=539&rft.pages=539-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met9050539&rft_dat=%3Cproquest_doaj_%3E2548990186%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-6fc7693bd8550af0695aa4656ac775fe71649be36a76db0d55ba1562ec025c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548990186&rft_id=info:pmid/&rfr_iscdi=true