Loading…
An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization
Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A...
Saved in:
Published in: | ISPRS international journal of geo-information 2017-01, Vol.6 (1), p.8-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 8 |
container_title | ISPRS international journal of geo-information |
container_volume | 6 |
creator | Qiu, Linyao Zhu, Qing Du, Zhiqiang Wang, Meng Fan, Yida |
description | Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization. |
doi_str_mv | 10.3390/ijgi6010008 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_236673b95b354905a6be5374092b5afb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_236673b95b354905a6be5374092b5afb</doaj_id><sourcerecordid>4309000771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1JoCHNKX9A0EshuB1Jtmwd89VmYdOQj_YqRtZ4q8VrJZJd2Pz6KN1SQk8z8_LMOzNMURxz-Cylhi9-vfIKOAC074oDIQSUWqtq703-vjhKaZ0J0Fy2FRwU6XRkN2N5QRscHbujKXr6jQO7pulXcOwMEzkWRna1tdE79j3c3y5ZHyK7nofJl0vcUmSLDa6IPfiBEvMju_AJ05T1O3JzN_nc_tOnGQf_jK_Vh2K_xyHR0d94WPz4evlwflUub74tzk-XZSd1M5WVBoFcWidtp4EaVGRbrrWzViKnXgipOXa1EtRwXQnLySpJ4AjANh2Xh8Vi5-sCrs1j9BuMWxPQmz9CiCuDcfLdQEZIpRppdW1lnefWqCzVsqlAC1tjb7PXp53XYwxPM6XJbHzqaBhwpDAnw9sWIJvIKqMf_0PXYY5jvjRTSvCMtiJTJzuqiyGlSP2_BTmY13-aN_-UL8CXkRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862118882</pqid></control><display><type>article</type><title>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</title><source>Publicly Available Content Database</source><creator>Qiu, Linyao ; Zhu, Qing ; Du, Zhiqiang ; Wang, Meng ; Fan, Yida</creator><creatorcontrib>Qiu, Linyao ; Zhu, Qing ; Du, Zhiqiang ; Wang, Meng ; Fan, Yida</creatorcontrib><description>Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi6010008</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>disaster reduction visualization ; Disasters ; multi-layer ; Multilayers ; NoSQL ; on-demand ; Query processing ; Remote sensing ; Retrieval ; semantic description ; Tiles ; Visualization</subject><ispartof>ISPRS international journal of geo-information, 2017-01, Vol.6 (1), p.8-8</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</citedby><cites>FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</cites><orcidid>0000-0002-8314-4354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1862118882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1862118882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><creatorcontrib>Qiu, Linyao</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Du, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fan, Yida</creatorcontrib><title>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</title><title>ISPRS international journal of geo-information</title><description>Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.</description><subject>disaster reduction visualization</subject><subject>Disasters</subject><subject>multi-layer</subject><subject>Multilayers</subject><subject>NoSQL</subject><subject>on-demand</subject><subject>Query processing</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>semantic description</subject><subject>Tiles</subject><subject>Visualization</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1r3DAQhk1JoCHNKX9A0EshuB1Jtmwd89VmYdOQj_YqRtZ4q8VrJZJd2Pz6KN1SQk8z8_LMOzNMURxz-Cylhi9-vfIKOAC074oDIQSUWqtq703-vjhKaZ0J0Fy2FRwU6XRkN2N5QRscHbujKXr6jQO7pulXcOwMEzkWRna1tdE79j3c3y5ZHyK7nofJl0vcUmSLDa6IPfiBEvMju_AJ05T1O3JzN_nc_tOnGQf_jK_Vh2K_xyHR0d94WPz4evlwflUub74tzk-XZSd1M5WVBoFcWidtp4EaVGRbrrWzViKnXgipOXa1EtRwXQnLySpJ4AjANh2Xh8Vi5-sCrs1j9BuMWxPQmz9CiCuDcfLdQEZIpRppdW1lnefWqCzVsqlAC1tjb7PXp53XYwxPM6XJbHzqaBhwpDAnw9sWIJvIKqMf_0PXYY5jvjRTSvCMtiJTJzuqiyGlSP2_BTmY13-aN_-UL8CXkRA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Qiu, Linyao</creator><creator>Zhu, Qing</creator><creator>Du, Zhiqiang</creator><creator>Wang, Meng</creator><creator>Fan, Yida</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8314-4354</orcidid></search><sort><creationdate>20170101</creationdate><title>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</title><author>Qiu, Linyao ; Zhu, Qing ; Du, Zhiqiang ; Wang, Meng ; Fan, Yida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>disaster reduction visualization</topic><topic>Disasters</topic><topic>multi-layer</topic><topic>Multilayers</topic><topic>NoSQL</topic><topic>on-demand</topic><topic>Query processing</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>semantic description</topic><topic>Tiles</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Linyao</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Du, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fan, Yida</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Linyao</au><au>Zhu, Qing</au><au>Du, Zhiqiang</au><au>Wang, Meng</au><au>Fan, Yida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>6</volume><issue>1</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi6010008</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8314-4354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-9964 |
ispartof | ISPRS international journal of geo-information, 2017-01, Vol.6 (1), p.8-8 |
issn | 2220-9964 2220-9964 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_236673b95b354905a6be5374092b5afb |
source | Publicly Available Content Database |
subjects | disaster reduction visualization Disasters multi-layer Multilayers NoSQL on-demand Query processing Remote sensing Retrieval semantic description Tiles Visualization |
title | An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20On-Demand%20Retrieval%20Method%20Based%20on%20Hybrid%20NoSQL%20for%20Multi-Layer%20Image%20Tiles%20in%20Disaster%20Reduction%20Visualization&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Qiu,%20Linyao&rft.date=2017-01-01&rft.volume=6&rft.issue=1&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi6010008&rft_dat=%3Cproquest_doaj_%3E4309000771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1862118882&rft_id=info:pmid/&rfr_iscdi=true |