Loading…

An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization

Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2017-01, Vol.6 (1), p.8-8
Main Authors: Qiu, Linyao, Zhu, Qing, Du, Zhiqiang, Wang, Meng, Fan, Yida
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13
cites cdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13
container_end_page 8
container_issue 1
container_start_page 8
container_title ISPRS international journal of geo-information
container_volume 6
creator Qiu, Linyao
Zhu, Qing
Du, Zhiqiang
Wang, Meng
Fan, Yida
description Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.
doi_str_mv 10.3390/ijgi6010008
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_236673b95b354905a6be5374092b5afb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_236673b95b354905a6be5374092b5afb</doaj_id><sourcerecordid>4309000771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1JoCHNKX9A0EshuB1Jtmwd89VmYdOQj_YqRtZ4q8VrJZJd2Pz6KN1SQk8z8_LMOzNMURxz-Cylhi9-vfIKOAC074oDIQSUWqtq703-vjhKaZ0J0Fy2FRwU6XRkN2N5QRscHbujKXr6jQO7pulXcOwMEzkWRna1tdE79j3c3y5ZHyK7nofJl0vcUmSLDa6IPfiBEvMju_AJ05T1O3JzN_nc_tOnGQf_jK_Vh2K_xyHR0d94WPz4evlwflUub74tzk-XZSd1M5WVBoFcWidtp4EaVGRbrrWzViKnXgipOXa1EtRwXQnLySpJ4AjANh2Xh8Vi5-sCrs1j9BuMWxPQmz9CiCuDcfLdQEZIpRppdW1lnefWqCzVsqlAC1tjb7PXp53XYwxPM6XJbHzqaBhwpDAnw9sWIJvIKqMf_0PXYY5jvjRTSvCMtiJTJzuqiyGlSP2_BTmY13-aN_-UL8CXkRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862118882</pqid></control><display><type>article</type><title>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</title><source>Publicly Available Content Database</source><creator>Qiu, Linyao ; Zhu, Qing ; Du, Zhiqiang ; Wang, Meng ; Fan, Yida</creator><creatorcontrib>Qiu, Linyao ; Zhu, Qing ; Du, Zhiqiang ; Wang, Meng ; Fan, Yida</creatorcontrib><description>Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi6010008</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>disaster reduction visualization ; Disasters ; multi-layer ; Multilayers ; NoSQL ; on-demand ; Query processing ; Remote sensing ; Retrieval ; semantic description ; Tiles ; Visualization</subject><ispartof>ISPRS international journal of geo-information, 2017-01, Vol.6 (1), p.8-8</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</citedby><cites>FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</cites><orcidid>0000-0002-8314-4354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1862118882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1862118882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><creatorcontrib>Qiu, Linyao</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Du, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fan, Yida</creatorcontrib><title>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</title><title>ISPRS international journal of geo-information</title><description>Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.</description><subject>disaster reduction visualization</subject><subject>Disasters</subject><subject>multi-layer</subject><subject>Multilayers</subject><subject>NoSQL</subject><subject>on-demand</subject><subject>Query processing</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>semantic description</subject><subject>Tiles</subject><subject>Visualization</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1r3DAQhk1JoCHNKX9A0EshuB1Jtmwd89VmYdOQj_YqRtZ4q8VrJZJd2Pz6KN1SQk8z8_LMOzNMURxz-Cylhi9-vfIKOAC074oDIQSUWqtq703-vjhKaZ0J0Fy2FRwU6XRkN2N5QRscHbujKXr6jQO7pulXcOwMEzkWRna1tdE79j3c3y5ZHyK7nofJl0vcUmSLDa6IPfiBEvMju_AJ05T1O3JzN_nc_tOnGQf_jK_Vh2K_xyHR0d94WPz4evlwflUub74tzk-XZSd1M5WVBoFcWidtp4EaVGRbrrWzViKnXgipOXa1EtRwXQnLySpJ4AjANh2Xh8Vi5-sCrs1j9BuMWxPQmz9CiCuDcfLdQEZIpRppdW1lnefWqCzVsqlAC1tjb7PXp53XYwxPM6XJbHzqaBhwpDAnw9sWIJvIKqMf_0PXYY5jvjRTSvCMtiJTJzuqiyGlSP2_BTmY13-aN_-UL8CXkRA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Qiu, Linyao</creator><creator>Zhu, Qing</creator><creator>Du, Zhiqiang</creator><creator>Wang, Meng</creator><creator>Fan, Yida</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8314-4354</orcidid></search><sort><creationdate>20170101</creationdate><title>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</title><author>Qiu, Linyao ; Zhu, Qing ; Du, Zhiqiang ; Wang, Meng ; Fan, Yida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>disaster reduction visualization</topic><topic>Disasters</topic><topic>multi-layer</topic><topic>Multilayers</topic><topic>NoSQL</topic><topic>on-demand</topic><topic>Query processing</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>semantic description</topic><topic>Tiles</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Linyao</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Du, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fan, Yida</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Linyao</au><au>Zhu, Qing</au><au>Du, Zhiqiang</au><au>Wang, Meng</au><au>Fan, Yida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>6</volume><issue>1</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi6010008</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8314-4354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2017-01, Vol.6 (1), p.8-8
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_236673b95b354905a6be5374092b5afb
source Publicly Available Content Database
subjects disaster reduction visualization
Disasters
multi-layer
Multilayers
NoSQL
on-demand
Query processing
Remote sensing
Retrieval
semantic description
Tiles
Visualization
title An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20On-Demand%20Retrieval%20Method%20Based%20on%20Hybrid%20NoSQL%20for%20Multi-Layer%20Image%20Tiles%20in%20Disaster%20Reduction%20Visualization&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Qiu,%20Linyao&rft.date=2017-01-01&rft.volume=6&rft.issue=1&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi6010008&rft_dat=%3Cproquest_doaj_%3E4309000771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-4902a13bd3bc90e7a6eb8199dbb3a1ef22391ac562e71942b1eb63e0de00b7c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1862118882&rft_id=info:pmid/&rfr_iscdi=true