Loading…
Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks
In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artif...
Saved in:
Published in: | Journal of King Saud University. Computer and information sciences 2024-01, Vol.36 (1), p.101905, Article 101905 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053 |
container_end_page | |
container_issue | 1 |
container_start_page | 101905 |
container_title | Journal of King Saud University. Computer and information sciences |
container_volume | 36 |
creator | Alonso-Bastida, Alexis Cervantes-Bobadilla, Marisol Salazar-Piña, Dolores Azucena Adam-Medina, Manuel García-Morales, Jarniel Terrazas-Meráz, María Alejandra |
description | In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies. |
doi_str_mv | 10.1016/j.jksuci.2023.101905 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23745f57a9a4444c8925ce660c527091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1319157823004597</els_id><doaj_id>oai_doaj_org_article_23745f57a9a4444c8925ce660c527091</doaj_id><sourcerecordid>S1319157823004597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053</originalsourceid><addsrcrecordid>eNp9kMtu2zAQRYkiBWqk-YMu-ANy-RBJcVPASPMwkMcmXRPUaNhSdkWDlJvk70tHRZfhZoAB78HcQ8gXztaccf11XI-7coS4FkzI08oy9YGshOCy4aLtzsiKS24brkz3iVyUMjLGuNGqlXpFxqsyx99-jmmiKdDbfsOBhpTp9_snQXMsO3rIOERYfkx0_oX0Hl8i-Ike0uG4X7K9LzjQONFNnmOIEP2ePuAxv435OeVd-Uw-Br8vePFvnpMf11dPl7fN3ePN9nJz14DUZm56q7TyiLwVrYAhcG4Dx36QCF7VIhg6o40ySgJag7ofOiGNV52FXmim5DnZLtwh-dEdcq2XX13y0b0tUv7pfD0S9uhqsFVBGW99Wx90VihArRkoYZjlldUuLMiplIzhP48zd9LvRrfodyf9btFfY9-WGNaefyJmVyDiBFVkRpjrIfF9wF8knI7G</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</title><source>Elsevier ScienceDirect Journals</source><creator>Alonso-Bastida, Alexis ; Cervantes-Bobadilla, Marisol ; Salazar-Piña, Dolores Azucena ; Adam-Medina, Manuel ; García-Morales, Jarniel ; Terrazas-Meráz, María Alejandra</creator><creatorcontrib>Alonso-Bastida, Alexis ; Cervantes-Bobadilla, Marisol ; Salazar-Piña, Dolores Azucena ; Adam-Medina, Manuel ; García-Morales, Jarniel ; Terrazas-Meráz, María Alejandra</creatorcontrib><description>In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.</description><identifier>ISSN: 1319-1578</identifier><identifier>EISSN: 2213-1248</identifier><identifier>DOI: 10.1016/j.jksuci.2023.101905</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial Neural Network ; Glycated hemoglobin ; Graphical interface ; Medical tool ; Mexican population ; Physiological factors</subject><ispartof>Journal of King Saud University. Computer and information sciences, 2024-01, Vol.36 (1), p.101905, Article 101905</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053</cites><orcidid>0000-0001-8563-9767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1319157823004597$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Alonso-Bastida, Alexis</creatorcontrib><creatorcontrib>Cervantes-Bobadilla, Marisol</creatorcontrib><creatorcontrib>Salazar-Piña, Dolores Azucena</creatorcontrib><creatorcontrib>Adam-Medina, Manuel</creatorcontrib><creatorcontrib>García-Morales, Jarniel</creatorcontrib><creatorcontrib>Terrazas-Meráz, María Alejandra</creatorcontrib><title>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</title><title>Journal of King Saud University. Computer and information sciences</title><description>In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.</description><subject>Artificial Neural Network</subject><subject>Glycated hemoglobin</subject><subject>Graphical interface</subject><subject>Medical tool</subject><subject>Mexican population</subject><subject>Physiological factors</subject><issn>1319-1578</issn><issn>2213-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kMtu2zAQRYkiBWqk-YMu-ANy-RBJcVPASPMwkMcmXRPUaNhSdkWDlJvk70tHRZfhZoAB78HcQ8gXztaccf11XI-7coS4FkzI08oy9YGshOCy4aLtzsiKS24brkz3iVyUMjLGuNGqlXpFxqsyx99-jmmiKdDbfsOBhpTp9_snQXMsO3rIOERYfkx0_oX0Hl8i-Ike0uG4X7K9LzjQONFNnmOIEP2ePuAxv435OeVd-Uw-Br8vePFvnpMf11dPl7fN3ePN9nJz14DUZm56q7TyiLwVrYAhcG4Dx36QCF7VIhg6o40ySgJag7ofOiGNV52FXmim5DnZLtwh-dEdcq2XX13y0b0tUv7pfD0S9uhqsFVBGW99Wx90VihArRkoYZjlldUuLMiplIzhP48zd9LvRrfodyf9btFfY9-WGNaefyJmVyDiBFVkRpjrIfF9wF8knI7G</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Alonso-Bastida, Alexis</creator><creator>Cervantes-Bobadilla, Marisol</creator><creator>Salazar-Piña, Dolores Azucena</creator><creator>Adam-Medina, Manuel</creator><creator>García-Morales, Jarniel</creator><creator>Terrazas-Meráz, María Alejandra</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8563-9767</orcidid></search><sort><creationdate>202401</creationdate><title>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</title><author>Alonso-Bastida, Alexis ; Cervantes-Bobadilla, Marisol ; Salazar-Piña, Dolores Azucena ; Adam-Medina, Manuel ; García-Morales, Jarniel ; Terrazas-Meráz, María Alejandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Neural Network</topic><topic>Glycated hemoglobin</topic><topic>Graphical interface</topic><topic>Medical tool</topic><topic>Mexican population</topic><topic>Physiological factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Bastida, Alexis</creatorcontrib><creatorcontrib>Cervantes-Bobadilla, Marisol</creatorcontrib><creatorcontrib>Salazar-Piña, Dolores Azucena</creatorcontrib><creatorcontrib>Adam-Medina, Manuel</creatorcontrib><creatorcontrib>García-Morales, Jarniel</creatorcontrib><creatorcontrib>Terrazas-Meráz, María Alejandra</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of King Saud University. Computer and information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Bastida, Alexis</au><au>Cervantes-Bobadilla, Marisol</au><au>Salazar-Piña, Dolores Azucena</au><au>Adam-Medina, Manuel</au><au>García-Morales, Jarniel</au><au>Terrazas-Meráz, María Alejandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</atitle><jtitle>Journal of King Saud University. Computer and information sciences</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><spage>101905</spage><pages>101905-</pages><artnum>101905</artnum><issn>1319-1578</issn><eissn>2213-1248</eissn><abstract>In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jksuci.2023.101905</doi><orcidid>https://orcid.org/0000-0001-8563-9767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1319-1578 |
ispartof | Journal of King Saud University. Computer and information sciences, 2024-01, Vol.36 (1), p.101905, Article 101905 |
issn | 1319-1578 2213-1248 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_23745f57a9a4444c8925ce660c527091 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial Neural Network Glycated hemoglobin Graphical interface Medical tool Mexican population Physiological factors |
title | Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20HbA1c%20for%20DMT2%20risk%20prediction%20on%20the%20Mexican%20population%20based%20in%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20King%20Saud%20University.%20Computer%20and%20information%20sciences&rft.au=Alonso-Bastida,%20Alexis&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.spage=101905&rft.pages=101905-&rft.artnum=101905&rft.issn=1319-1578&rft.eissn=2213-1248&rft_id=info:doi/10.1016/j.jksuci.2023.101905&rft_dat=%3Celsevier_doaj_%3ES1319157823004597%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |