Loading…

Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks

In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artif...

Full description

Saved in:
Bibliographic Details
Published in:Journal of King Saud University. Computer and information sciences 2024-01, Vol.36 (1), p.101905, Article 101905
Main Authors: Alonso-Bastida, Alexis, Cervantes-Bobadilla, Marisol, Salazar-Piña, Dolores Azucena, Adam-Medina, Manuel, García-Morales, Jarniel, Terrazas-Meráz, María Alejandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053
container_end_page
container_issue 1
container_start_page 101905
container_title Journal of King Saud University. Computer and information sciences
container_volume 36
creator Alonso-Bastida, Alexis
Cervantes-Bobadilla, Marisol
Salazar-Piña, Dolores Azucena
Adam-Medina, Manuel
García-Morales, Jarniel
Terrazas-Meráz, María Alejandra
description In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.
doi_str_mv 10.1016/j.jksuci.2023.101905
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23745f57a9a4444c8925ce660c527091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1319157823004597</els_id><doaj_id>oai_doaj_org_article_23745f57a9a4444c8925ce660c527091</doaj_id><sourcerecordid>S1319157823004597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053</originalsourceid><addsrcrecordid>eNp9kMtu2zAQRYkiBWqk-YMu-ANy-RBJcVPASPMwkMcmXRPUaNhSdkWDlJvk70tHRZfhZoAB78HcQ8gXztaccf11XI-7coS4FkzI08oy9YGshOCy4aLtzsiKS24brkz3iVyUMjLGuNGqlXpFxqsyx99-jmmiKdDbfsOBhpTp9_snQXMsO3rIOERYfkx0_oX0Hl8i-Ike0uG4X7K9LzjQONFNnmOIEP2ePuAxv435OeVd-Uw-Br8vePFvnpMf11dPl7fN3ePN9nJz14DUZm56q7TyiLwVrYAhcG4Dx36QCF7VIhg6o40ySgJag7ofOiGNV52FXmim5DnZLtwh-dEdcq2XX13y0b0tUv7pfD0S9uhqsFVBGW99Wx90VihArRkoYZjlldUuLMiplIzhP48zd9LvRrfodyf9btFfY9-WGNaefyJmVyDiBFVkRpjrIfF9wF8knI7G</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</title><source>Elsevier ScienceDirect Journals</source><creator>Alonso-Bastida, Alexis ; Cervantes-Bobadilla, Marisol ; Salazar-Piña, Dolores Azucena ; Adam-Medina, Manuel ; García-Morales, Jarniel ; Terrazas-Meráz, María Alejandra</creator><creatorcontrib>Alonso-Bastida, Alexis ; Cervantes-Bobadilla, Marisol ; Salazar-Piña, Dolores Azucena ; Adam-Medina, Manuel ; García-Morales, Jarniel ; Terrazas-Meráz, María Alejandra</creatorcontrib><description>In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.</description><identifier>ISSN: 1319-1578</identifier><identifier>EISSN: 2213-1248</identifier><identifier>DOI: 10.1016/j.jksuci.2023.101905</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial Neural Network ; Glycated hemoglobin ; Graphical interface ; Medical tool ; Mexican population ; Physiological factors</subject><ispartof>Journal of King Saud University. Computer and information sciences, 2024-01, Vol.36 (1), p.101905, Article 101905</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053</cites><orcidid>0000-0001-8563-9767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1319157823004597$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Alonso-Bastida, Alexis</creatorcontrib><creatorcontrib>Cervantes-Bobadilla, Marisol</creatorcontrib><creatorcontrib>Salazar-Piña, Dolores Azucena</creatorcontrib><creatorcontrib>Adam-Medina, Manuel</creatorcontrib><creatorcontrib>García-Morales, Jarniel</creatorcontrib><creatorcontrib>Terrazas-Meráz, María Alejandra</creatorcontrib><title>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</title><title>Journal of King Saud University. Computer and information sciences</title><description>In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.</description><subject>Artificial Neural Network</subject><subject>Glycated hemoglobin</subject><subject>Graphical interface</subject><subject>Medical tool</subject><subject>Mexican population</subject><subject>Physiological factors</subject><issn>1319-1578</issn><issn>2213-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kMtu2zAQRYkiBWqk-YMu-ANy-RBJcVPASPMwkMcmXRPUaNhSdkWDlJvk70tHRZfhZoAB78HcQ8gXztaccf11XI-7coS4FkzI08oy9YGshOCy4aLtzsiKS24brkz3iVyUMjLGuNGqlXpFxqsyx99-jmmiKdDbfsOBhpTp9_snQXMsO3rIOERYfkx0_oX0Hl8i-Ike0uG4X7K9LzjQONFNnmOIEP2ePuAxv435OeVd-Uw-Br8vePFvnpMf11dPl7fN3ePN9nJz14DUZm56q7TyiLwVrYAhcG4Dx36QCF7VIhg6o40ySgJag7ofOiGNV52FXmim5DnZLtwh-dEdcq2XX13y0b0tUv7pfD0S9uhqsFVBGW99Wx90VihArRkoYZjlldUuLMiplIzhP48zd9LvRrfodyf9btFfY9-WGNaefyJmVyDiBFVkRpjrIfF9wF8knI7G</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Alonso-Bastida, Alexis</creator><creator>Cervantes-Bobadilla, Marisol</creator><creator>Salazar-Piña, Dolores Azucena</creator><creator>Adam-Medina, Manuel</creator><creator>García-Morales, Jarniel</creator><creator>Terrazas-Meráz, María Alejandra</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8563-9767</orcidid></search><sort><creationdate>202401</creationdate><title>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</title><author>Alonso-Bastida, Alexis ; Cervantes-Bobadilla, Marisol ; Salazar-Piña, Dolores Azucena ; Adam-Medina, Manuel ; García-Morales, Jarniel ; Terrazas-Meráz, María Alejandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Neural Network</topic><topic>Glycated hemoglobin</topic><topic>Graphical interface</topic><topic>Medical tool</topic><topic>Mexican population</topic><topic>Physiological factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Bastida, Alexis</creatorcontrib><creatorcontrib>Cervantes-Bobadilla, Marisol</creatorcontrib><creatorcontrib>Salazar-Piña, Dolores Azucena</creatorcontrib><creatorcontrib>Adam-Medina, Manuel</creatorcontrib><creatorcontrib>García-Morales, Jarniel</creatorcontrib><creatorcontrib>Terrazas-Meráz, María Alejandra</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of King Saud University. Computer and information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Bastida, Alexis</au><au>Cervantes-Bobadilla, Marisol</au><au>Salazar-Piña, Dolores Azucena</au><au>Adam-Medina, Manuel</au><au>García-Morales, Jarniel</au><au>Terrazas-Meráz, María Alejandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks</atitle><jtitle>Journal of King Saud University. Computer and information sciences</jtitle><date>2024-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><spage>101905</spage><pages>101905-</pages><artnum>101905</artnum><issn>1319-1578</issn><eissn>2213-1248</eissn><abstract>In this paper, the main objective is to estimate the percentage of glycosylated hemoglobin through an easily accessible computational platform to estimate the risk of generating type 2 diabetes mellitus in the Mexican population. The estimation of the computational tool is developed through an artificial neural network model, which was trained and validated according to a population sample of 1120 Mexican people between 18 and 59 years old. The model inputs were gender, age, body mass index, waist circumference, weekly food consumption, family history, and whether the person suffers from any chronic degenerative disease other than T2DM. We used the percentage of glycosylated hemoglobin as output, estimated according to a dynamic glucose model. The estimation results present a coefficient of determination of 99 %, demonstrating an acceptable performance of the neural network model. The developed platform is an aid tool for health personnel, which seeks to generate a first approximation to the glycemic status of those communities with a high marginalization index for generating disease prevention strategies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jksuci.2023.101905</doi><orcidid>https://orcid.org/0000-0001-8563-9767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1319-1578
ispartof Journal of King Saud University. Computer and information sciences, 2024-01, Vol.36 (1), p.101905, Article 101905
issn 1319-1578
2213-1248
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_23745f57a9a4444c8925ce660c527091
source Elsevier ScienceDirect Journals
subjects Artificial Neural Network
Glycated hemoglobin
Graphical interface
Medical tool
Mexican population
Physiological factors
title Estimation of HbA1c for DMT2 risk prediction on the Mexican population based in Artificial Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20HbA1c%20for%20DMT2%20risk%20prediction%20on%20the%20Mexican%20population%20based%20in%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20King%20Saud%20University.%20Computer%20and%20information%20sciences&rft.au=Alonso-Bastida,%20Alexis&rft.date=2024-01&rft.volume=36&rft.issue=1&rft.spage=101905&rft.pages=101905-&rft.artnum=101905&rft.issn=1319-1578&rft.eissn=2213-1248&rft_id=info:doi/10.1016/j.jksuci.2023.101905&rft_dat=%3Celsevier_doaj_%3ES1319157823004597%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-b9565aee14242cdf119f1ebd3eca5319ef87675753ce97e6bd8237a589cb26053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true