Loading…

Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography

The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper...

Full description

Saved in:
Bibliographic Details
Published in:Actuators 2022-02, Vol.11 (2), p.33
Main Authors: Gautreau, Elie, Sandoval, Juan, Thomas, Aurélien, Guilhem, Jean-Michel, Carbone, Giuseppe, Zeghloul, Saïd, Laribi, Med Amine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463
cites cdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463
container_end_page
container_issue 2
container_start_page 33
container_title Actuators
container_volume 11
creator Gautreau, Elie
Sandoval, Juan
Thomas, Aurélien
Guilhem, Jean-Michel
Carbone, Giuseppe
Zeghloul, Saïd
Laribi, Med Amine
description The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.
doi_str_mv 10.3390/act11020033
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2379b65fb53b42c4b5cbc6537e8c1795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2379b65fb53b42c4b5cbc6537e8c1795</doaj_id><sourcerecordid>2632135696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</originalsourceid><addsrcrecordid>eNpVkU9rGzEQxZfSQEPiU7-AoKdStpE0-ns0TtIYDAUnOYuRrHXWbFdbaV3ib991HIo7lxkejx9veFX1mdHvAJbeYBgZo5xSgA_VJada1dRw-fHs_lTNStnRaSwDQ-GyWq3jZt9vsA8Hcvc6dKkdcWxTT1JDsCemvk33ZJ18GttA5qW0ZcR-JE3K5DYNQxczeUx92mYcXg7X1UWDXYmz931VPd_fPS0e6tXPH8vFfFUHsGaskZnpOOYM3hj0WlPGvYlCsSgs96BQCK6tkBwZ3zCmtcUouUZlIAgFV9XyxN0k3Lkht78wH1zC1r0JKW8d5ilwFx0Hbb2SjZfgBQ_Cy-CDkqCjCUxbObG-nlgv2P2Hepiv3FGjgjKlNfxhk_fLyTvk9Hsfy-h2aZ_76VXHFXAGUtljum8nV8iplBybf1hG3bEpd9YU_AWZ_IHe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632135696</pqid></control><display><type>article</type><title>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</title><source>Publicly Available Content Database</source><creator>Gautreau, Elie ; Sandoval, Juan ; Thomas, Aurélien ; Guilhem, Jean-Michel ; Carbone, Giuseppe ; Zeghloul, Saïd ; Laribi, Med Amine</creator><creatorcontrib>Gautreau, Elie ; Sandoval, Juan ; Thomas, Aurélien ; Guilhem, Jean-Michel ; Carbone, Giuseppe ; Zeghloul, Saïd ; Laribi, Med Amine</creatorcontrib><description>The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act11020033</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abdomen ; Anthropomorphism ; Automatic ; Axis movements ; Bioengineering ; Doppler sonography ; Engineering Sciences ; Haptics ; human-robot interaction ; Imaging ; Interfaces ; Kinematics ; Life Sciences ; medical robot ; Patients ; Redundancy ; redundancy resolution ; Robot arms ; Robot control ; Robot dynamics ; Robotics ; Robots ; Surgery ; Synchronism ; torque-control ; Ultrasonic imaging ; Working conditions</subject><ispartof>Actuators, 2022-02, Vol.11 (2), p.33</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</citedby><cites>FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</cites><orcidid>0000-0002-8868-4448 ; 0000-0003-0831-8358 ; 0000-0003-0797-7669 ; 0000-0003-3590-9532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632135696/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632135696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04016773$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautreau, Elie</creatorcontrib><creatorcontrib>Sandoval, Juan</creatorcontrib><creatorcontrib>Thomas, Aurélien</creatorcontrib><creatorcontrib>Guilhem, Jean-Michel</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><creatorcontrib>Zeghloul, Saïd</creatorcontrib><creatorcontrib>Laribi, Med Amine</creatorcontrib><title>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</title><title>Actuators</title><description>The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.</description><subject>Abdomen</subject><subject>Anthropomorphism</subject><subject>Automatic</subject><subject>Axis movements</subject><subject>Bioengineering</subject><subject>Doppler sonography</subject><subject>Engineering Sciences</subject><subject>Haptics</subject><subject>human-robot interaction</subject><subject>Imaging</subject><subject>Interfaces</subject><subject>Kinematics</subject><subject>Life Sciences</subject><subject>medical robot</subject><subject>Patients</subject><subject>Redundancy</subject><subject>redundancy resolution</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgery</subject><subject>Synchronism</subject><subject>torque-control</subject><subject>Ultrasonic imaging</subject><subject>Working conditions</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9rGzEQxZfSQEPiU7-AoKdStpE0-ns0TtIYDAUnOYuRrHXWbFdbaV3ib991HIo7lxkejx9veFX1mdHvAJbeYBgZo5xSgA_VJada1dRw-fHs_lTNStnRaSwDQ-GyWq3jZt9vsA8Hcvc6dKkdcWxTT1JDsCemvk33ZJ18GttA5qW0ZcR-JE3K5DYNQxczeUx92mYcXg7X1UWDXYmz931VPd_fPS0e6tXPH8vFfFUHsGaskZnpOOYM3hj0WlPGvYlCsSgs96BQCK6tkBwZ3zCmtcUouUZlIAgFV9XyxN0k3Lkht78wH1zC1r0JKW8d5ilwFx0Hbb2SjZfgBQ_Cy-CDkqCjCUxbObG-nlgv2P2Hepiv3FGjgjKlNfxhk_fLyTvk9Hsfy-h2aZ_76VXHFXAGUtljum8nV8iplBybf1hG3bEpd9YU_AWZ_IHe</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gautreau, Elie</creator><creator>Sandoval, Juan</creator><creator>Thomas, Aurélien</creator><creator>Guilhem, Jean-Michel</creator><creator>Carbone, Giuseppe</creator><creator>Zeghloul, Saïd</creator><creator>Laribi, Med Amine</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8868-4448</orcidid><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid><orcidid>https://orcid.org/0000-0003-0797-7669</orcidid><orcidid>https://orcid.org/0000-0003-3590-9532</orcidid></search><sort><creationdate>20220201</creationdate><title>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</title><author>Gautreau, Elie ; Sandoval, Juan ; Thomas, Aurélien ; Guilhem, Jean-Michel ; Carbone, Giuseppe ; Zeghloul, Saïd ; Laribi, Med Amine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abdomen</topic><topic>Anthropomorphism</topic><topic>Automatic</topic><topic>Axis movements</topic><topic>Bioengineering</topic><topic>Doppler sonography</topic><topic>Engineering Sciences</topic><topic>Haptics</topic><topic>human-robot interaction</topic><topic>Imaging</topic><topic>Interfaces</topic><topic>Kinematics</topic><topic>Life Sciences</topic><topic>medical robot</topic><topic>Patients</topic><topic>Redundancy</topic><topic>redundancy resolution</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgery</topic><topic>Synchronism</topic><topic>torque-control</topic><topic>Ultrasonic imaging</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautreau, Elie</creatorcontrib><creatorcontrib>Sandoval, Juan</creatorcontrib><creatorcontrib>Thomas, Aurélien</creatorcontrib><creatorcontrib>Guilhem, Jean-Michel</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><creatorcontrib>Zeghloul, Saïd</creatorcontrib><creatorcontrib>Laribi, Med Amine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautreau, Elie</au><au>Sandoval, Juan</au><au>Thomas, Aurélien</au><au>Guilhem, Jean-Michel</au><au>Carbone, Giuseppe</au><au>Zeghloul, Saïd</au><au>Laribi, Med Amine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</atitle><jtitle>Actuators</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>11</volume><issue>2</issue><spage>33</spage><pages>33-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act11020033</doi><orcidid>https://orcid.org/0000-0002-8868-4448</orcidid><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid><orcidid>https://orcid.org/0000-0003-0797-7669</orcidid><orcidid>https://orcid.org/0000-0003-3590-9532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-0825
ispartof Actuators, 2022-02, Vol.11 (2), p.33
issn 2076-0825
2076-0825
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2379b65fb53b42c4b5cbc6537e8c1795
source Publicly Available Content Database
subjects Abdomen
Anthropomorphism
Automatic
Axis movements
Bioengineering
Doppler sonography
Engineering Sciences
Haptics
human-robot interaction
Imaging
Interfaces
Kinematics
Life Sciences
medical robot
Patients
Redundancy
redundancy resolution
Robot arms
Robot control
Robot dynamics
Robotics
Robots
Surgery
Synchronism
torque-control
Ultrasonic imaging
Working conditions
title Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redundancy%20Exploitation%20of%20an%208-DoF%20Robotic%20Assistant%20for%20Doppler%20Sonography&rft.jtitle=Actuators&rft.au=Gautreau,%20Elie&rft.date=2022-02-01&rft.volume=11&rft.issue=2&rft.spage=33&rft.pages=33-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act11020033&rft_dat=%3Cproquest_doaj_%3E2632135696%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632135696&rft_id=info:pmid/&rfr_iscdi=true