Loading…
Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography
The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper...
Saved in:
Published in: | Actuators 2022-02, Vol.11 (2), p.33 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463 |
container_end_page | |
container_issue | 2 |
container_start_page | 33 |
container_title | Actuators |
container_volume | 11 |
creator | Gautreau, Elie Sandoval, Juan Thomas, Aurélien Guilhem, Jean-Michel Carbone, Giuseppe Zeghloul, Saïd Laribi, Med Amine |
description | The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes. |
doi_str_mv | 10.3390/act11020033 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2379b65fb53b42c4b5cbc6537e8c1795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2379b65fb53b42c4b5cbc6537e8c1795</doaj_id><sourcerecordid>2632135696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</originalsourceid><addsrcrecordid>eNpVkU9rGzEQxZfSQEPiU7-AoKdStpE0-ns0TtIYDAUnOYuRrHXWbFdbaV3ib991HIo7lxkejx9veFX1mdHvAJbeYBgZo5xSgA_VJada1dRw-fHs_lTNStnRaSwDQ-GyWq3jZt9vsA8Hcvc6dKkdcWxTT1JDsCemvk33ZJ18GttA5qW0ZcR-JE3K5DYNQxczeUx92mYcXg7X1UWDXYmz931VPd_fPS0e6tXPH8vFfFUHsGaskZnpOOYM3hj0WlPGvYlCsSgs96BQCK6tkBwZ3zCmtcUouUZlIAgFV9XyxN0k3Lkht78wH1zC1r0JKW8d5ilwFx0Hbb2SjZfgBQ_Cy-CDkqCjCUxbObG-nlgv2P2Hepiv3FGjgjKlNfxhk_fLyTvk9Hsfy-h2aZ_76VXHFXAGUtljum8nV8iplBybf1hG3bEpd9YU_AWZ_IHe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632135696</pqid></control><display><type>article</type><title>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</title><source>Publicly Available Content Database</source><creator>Gautreau, Elie ; Sandoval, Juan ; Thomas, Aurélien ; Guilhem, Jean-Michel ; Carbone, Giuseppe ; Zeghloul, Saïd ; Laribi, Med Amine</creator><creatorcontrib>Gautreau, Elie ; Sandoval, Juan ; Thomas, Aurélien ; Guilhem, Jean-Michel ; Carbone, Giuseppe ; Zeghloul, Saïd ; Laribi, Med Amine</creatorcontrib><description>The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act11020033</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abdomen ; Anthropomorphism ; Automatic ; Axis movements ; Bioengineering ; Doppler sonography ; Engineering Sciences ; Haptics ; human-robot interaction ; Imaging ; Interfaces ; Kinematics ; Life Sciences ; medical robot ; Patients ; Redundancy ; redundancy resolution ; Robot arms ; Robot control ; Robot dynamics ; Robotics ; Robots ; Surgery ; Synchronism ; torque-control ; Ultrasonic imaging ; Working conditions</subject><ispartof>Actuators, 2022-02, Vol.11 (2), p.33</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</citedby><cites>FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</cites><orcidid>0000-0002-8868-4448 ; 0000-0003-0831-8358 ; 0000-0003-0797-7669 ; 0000-0003-3590-9532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632135696/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632135696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04016773$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautreau, Elie</creatorcontrib><creatorcontrib>Sandoval, Juan</creatorcontrib><creatorcontrib>Thomas, Aurélien</creatorcontrib><creatorcontrib>Guilhem, Jean-Michel</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><creatorcontrib>Zeghloul, Saïd</creatorcontrib><creatorcontrib>Laribi, Med Amine</creatorcontrib><title>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</title><title>Actuators</title><description>The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.</description><subject>Abdomen</subject><subject>Anthropomorphism</subject><subject>Automatic</subject><subject>Axis movements</subject><subject>Bioengineering</subject><subject>Doppler sonography</subject><subject>Engineering Sciences</subject><subject>Haptics</subject><subject>human-robot interaction</subject><subject>Imaging</subject><subject>Interfaces</subject><subject>Kinematics</subject><subject>Life Sciences</subject><subject>medical robot</subject><subject>Patients</subject><subject>Redundancy</subject><subject>redundancy resolution</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Surgery</subject><subject>Synchronism</subject><subject>torque-control</subject><subject>Ultrasonic imaging</subject><subject>Working conditions</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9rGzEQxZfSQEPiU7-AoKdStpE0-ns0TtIYDAUnOYuRrHXWbFdbaV3ib991HIo7lxkejx9veFX1mdHvAJbeYBgZo5xSgA_VJada1dRw-fHs_lTNStnRaSwDQ-GyWq3jZt9vsA8Hcvc6dKkdcWxTT1JDsCemvk33ZJ18GttA5qW0ZcR-JE3K5DYNQxczeUx92mYcXg7X1UWDXYmz931VPd_fPS0e6tXPH8vFfFUHsGaskZnpOOYM3hj0WlPGvYlCsSgs96BQCK6tkBwZ3zCmtcUouUZlIAgFV9XyxN0k3Lkht78wH1zC1r0JKW8d5ilwFx0Hbb2SjZfgBQ_Cy-CDkqCjCUxbObG-nlgv2P2Hepiv3FGjgjKlNfxhk_fLyTvk9Hsfy-h2aZ_76VXHFXAGUtljum8nV8iplBybf1hG3bEpd9YU_AWZ_IHe</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gautreau, Elie</creator><creator>Sandoval, Juan</creator><creator>Thomas, Aurélien</creator><creator>Guilhem, Jean-Michel</creator><creator>Carbone, Giuseppe</creator><creator>Zeghloul, Saïd</creator><creator>Laribi, Med Amine</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8868-4448</orcidid><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid><orcidid>https://orcid.org/0000-0003-0797-7669</orcidid><orcidid>https://orcid.org/0000-0003-3590-9532</orcidid></search><sort><creationdate>20220201</creationdate><title>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</title><author>Gautreau, Elie ; Sandoval, Juan ; Thomas, Aurélien ; Guilhem, Jean-Michel ; Carbone, Giuseppe ; Zeghloul, Saïd ; Laribi, Med Amine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abdomen</topic><topic>Anthropomorphism</topic><topic>Automatic</topic><topic>Axis movements</topic><topic>Bioengineering</topic><topic>Doppler sonography</topic><topic>Engineering Sciences</topic><topic>Haptics</topic><topic>human-robot interaction</topic><topic>Imaging</topic><topic>Interfaces</topic><topic>Kinematics</topic><topic>Life Sciences</topic><topic>medical robot</topic><topic>Patients</topic><topic>Redundancy</topic><topic>redundancy resolution</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Surgery</topic><topic>Synchronism</topic><topic>torque-control</topic><topic>Ultrasonic imaging</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautreau, Elie</creatorcontrib><creatorcontrib>Sandoval, Juan</creatorcontrib><creatorcontrib>Thomas, Aurélien</creatorcontrib><creatorcontrib>Guilhem, Jean-Michel</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><creatorcontrib>Zeghloul, Saïd</creatorcontrib><creatorcontrib>Laribi, Med Amine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautreau, Elie</au><au>Sandoval, Juan</au><au>Thomas, Aurélien</au><au>Guilhem, Jean-Michel</au><au>Carbone, Giuseppe</au><au>Zeghloul, Saïd</au><au>Laribi, Med Amine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography</atitle><jtitle>Actuators</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>11</volume><issue>2</issue><spage>33</spage><pages>33-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act11020033</doi><orcidid>https://orcid.org/0000-0002-8868-4448</orcidid><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid><orcidid>https://orcid.org/0000-0003-0797-7669</orcidid><orcidid>https://orcid.org/0000-0003-3590-9532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0825 |
ispartof | Actuators, 2022-02, Vol.11 (2), p.33 |
issn | 2076-0825 2076-0825 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2379b65fb53b42c4b5cbc6537e8c1795 |
source | Publicly Available Content Database |
subjects | Abdomen Anthropomorphism Automatic Axis movements Bioengineering Doppler sonography Engineering Sciences Haptics human-robot interaction Imaging Interfaces Kinematics Life Sciences medical robot Patients Redundancy redundancy resolution Robot arms Robot control Robot dynamics Robotics Robots Surgery Synchronism torque-control Ultrasonic imaging Working conditions |
title | Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redundancy%20Exploitation%20of%20an%208-DoF%20Robotic%20Assistant%20for%20Doppler%20Sonography&rft.jtitle=Actuators&rft.au=Gautreau,%20Elie&rft.date=2022-02-01&rft.volume=11&rft.issue=2&rft.spage=33&rft.pages=33-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act11020033&rft_dat=%3Cproquest_doaj_%3E2632135696%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-a18c390033cb88ab77012b8e461e492b36a44279452a12d11779ae527a683c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632135696&rft_id=info:pmid/&rfr_iscdi=true |