Loading…

Femoral Shape and Size Variability from segmented CT datasets for patient-specific THA planning

Biomechanical functionality of artificial hips strongly correlates with quality of life of patients after total hip arthroplasty. As the numbers of total hip arthroplasty are growing due to increasing life expectancy, biomechanical research is of utmost importance to improve the implants used and th...

Full description

Saved in:
Bibliographic Details
Published in:Current directions in biomedical engineering 2020-09, Vol.6 (3), p.486-488
Main Authors: Fleischmann, Christopher, Leher, Irina, Sesselmann, Stefan, Scherb, David, Wolf, Alexander, Miehling, Jörg, Wartzack, Sandro
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomechanical functionality of artificial hips strongly correlates with quality of life of patients after total hip arthroplasty. As the numbers of total hip arthroplasty are growing due to increasing life expectancy, biomechanical research is of utmost importance to improve the implants used and the operative procedures applied. Multibody simulation is used to predict forces and moments inside the human body. Generic scaling is usually performed to adapt the human models used in multibody simulation to individual patients. However, since the shape and size of the bones can vary considerably, this type of scaling often is not sufficient. In this work various CT datasets were used to quantify differences of individual femoral shapes, especially with regard to important biomechanical hip parameters, such as the CCD angle or the femoral offset. Our results prove that multibody simulations should be modeled more patientspecific to be able to calculate articular forces and moments more precisely, and thus, to improve surgical planning.
ISSN:2364-5504
2364-5504
DOI:10.1515/cdbme-2020-3125