Loading…

TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries

TiNb2O7/carbon nanocomposites synthesized through a simple, surfactant assisted precursor route is reported as a promising alternative anode material for lithium-ion batteries (LIBs). The carbon component of the nanocomposites is derived from an inexpensive and sustainable keratin rich biological so...

Full description

Saved in:
Bibliographic Details
Published in:Open ceramics 2021-06, Vol.6, p.100131, Article 100131
Main Authors: Thiyagarajan, Ganesh Babu, Shanmugam, Vasu, Wilhelm, Michael, Mathur, Sanjay, Moodakare, Sahana B., Kumar, Ravi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13
cites cdi_FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13
container_end_page
container_issue
container_start_page 100131
container_title Open ceramics
container_volume 6
creator Thiyagarajan, Ganesh Babu
Shanmugam, Vasu
Wilhelm, Michael
Mathur, Sanjay
Moodakare, Sahana B.
Kumar, Ravi
description TiNb2O7/carbon nanocomposites synthesized through a simple, surfactant assisted precursor route is reported as a promising alternative anode material for lithium-ion batteries (LIBs). The carbon component of the nanocomposites is derived from an inexpensive and sustainable keratin rich biological source. The reinforcement of carbon in TiNb2O7 facilitated the formation of non-stoichiometric (Ti0.712Nb0.288)O2 crystalline phase, in addition to the stoichiometric TiNb2O7 phase. It also yielded a high specific surface area (~90 ​m2 ​g−1) and reduced crystallite size (~4 ​nm). Electrochemical results exemplified high reversible capacity of 356 mAh g−1 at 0.1 ​C and remarkable rate capability of ~26 mAh g−1 at ultra-high current rate of 32C. TiNb2O7/carbon nanocomposites also demonstrated remarkable cyclic stability with large capacity retention of 85% even after 50 cycles at 1 ​C. The experimental data attests the potential of TiNb2O7/keratin derived carbon nanocomposites as economically and environmentally viable promising anode material for LIBs. [Display omitted]
doi_str_mv 10.1016/j.oceram.2021.100131
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2381ddff00954c1fa966a7105ef6aca2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666539521000778</els_id><doaj_id>oai_doaj_org_article_2381ddff00954c1fa966a7105ef6aca2</doaj_id><sourcerecordid>S2666539521000778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxZfQQkKab9CDvsC6Gmkley-BEPonNDSX9CxmR6NYxrsykmrIt68cl9JTTzM83vsxw-u6jyBXIMF-2q0SccZ5paSCJknQcNFdKWttb_Ro3v2zX3Y3peyklGoDcqPlVbc8xx-Telr33xujxkV4zvHIXhDmKS1iwSVRmg-pxMpFYBFLOvJeNNmzmLE2O-6LCCmLbXzZ9oQHpFhfxT7Wbfw197FRJqwnI5cP3fvQ7HzzZ153P798fr7_1j8-fX24v3vsaYBN7cMEniUrvw5rPU6arfKBGcCwtGRhoKAnPzBNVmKwZkBjjFUIamI9Eujr7uHM9Ql37pDjjPnVJYzuTUj5xWGukfbslN6A9yFIOZqBIOBoLa5BGg4WCVVjDWcW5VRK5vCXB9KdKnAN-FaBO1XgzhW02O05xu3PY-TsCkVeiH3MTLUdEv8P-A2o_pMX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries</title><source>ScienceDirect (Online service)</source><creator>Thiyagarajan, Ganesh Babu ; Shanmugam, Vasu ; Wilhelm, Michael ; Mathur, Sanjay ; Moodakare, Sahana B. ; Kumar, Ravi</creator><creatorcontrib>Thiyagarajan, Ganesh Babu ; Shanmugam, Vasu ; Wilhelm, Michael ; Mathur, Sanjay ; Moodakare, Sahana B. ; Kumar, Ravi</creatorcontrib><description>TiNb2O7/carbon nanocomposites synthesized through a simple, surfactant assisted precursor route is reported as a promising alternative anode material for lithium-ion batteries (LIBs). The carbon component of the nanocomposites is derived from an inexpensive and sustainable keratin rich biological source. The reinforcement of carbon in TiNb2O7 facilitated the formation of non-stoichiometric (Ti0.712Nb0.288)O2 crystalline phase, in addition to the stoichiometric TiNb2O7 phase. It also yielded a high specific surface area (~90 ​m2 ​g−1) and reduced crystallite size (~4 ​nm). Electrochemical results exemplified high reversible capacity of 356 mAh g−1 at 0.1 ​C and remarkable rate capability of ~26 mAh g−1 at ultra-high current rate of 32C. TiNb2O7/carbon nanocomposites also demonstrated remarkable cyclic stability with large capacity retention of 85% even after 50 cycles at 1 ​C. The experimental data attests the potential of TiNb2O7/keratin derived carbon nanocomposites as economically and environmentally viable promising anode material for LIBs. [Display omitted]</description><identifier>ISSN: 2666-5395</identifier><identifier>EISSN: 2666-5395</identifier><identifier>DOI: 10.1016/j.oceram.2021.100131</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Keratin derived carbon ; Lithium-ion batteries ; Nanocomposites ; Precursor derived ceramics ; Titanium niobate</subject><ispartof>Open ceramics, 2021-06, Vol.6, p.100131, Article 100131</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13</citedby><cites>FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13</cites><orcidid>0000-0002-2453-1223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666539521000778$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Thiyagarajan, Ganesh Babu</creatorcontrib><creatorcontrib>Shanmugam, Vasu</creatorcontrib><creatorcontrib>Wilhelm, Michael</creatorcontrib><creatorcontrib>Mathur, Sanjay</creatorcontrib><creatorcontrib>Moodakare, Sahana B.</creatorcontrib><creatorcontrib>Kumar, Ravi</creatorcontrib><title>TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries</title><title>Open ceramics</title><description>TiNb2O7/carbon nanocomposites synthesized through a simple, surfactant assisted precursor route is reported as a promising alternative anode material for lithium-ion batteries (LIBs). The carbon component of the nanocomposites is derived from an inexpensive and sustainable keratin rich biological source. The reinforcement of carbon in TiNb2O7 facilitated the formation of non-stoichiometric (Ti0.712Nb0.288)O2 crystalline phase, in addition to the stoichiometric TiNb2O7 phase. It also yielded a high specific surface area (~90 ​m2 ​g−1) and reduced crystallite size (~4 ​nm). Electrochemical results exemplified high reversible capacity of 356 mAh g−1 at 0.1 ​C and remarkable rate capability of ~26 mAh g−1 at ultra-high current rate of 32C. TiNb2O7/carbon nanocomposites also demonstrated remarkable cyclic stability with large capacity retention of 85% even after 50 cycles at 1 ​C. The experimental data attests the potential of TiNb2O7/keratin derived carbon nanocomposites as economically and environmentally viable promising anode material for LIBs. [Display omitted]</description><subject>Keratin derived carbon</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Precursor derived ceramics</subject><subject>Titanium niobate</subject><issn>2666-5395</issn><issn>2666-5395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU9rGzEQxZfQQkKab9CDvsC6Gmkley-BEPonNDSX9CxmR6NYxrsykmrIt68cl9JTTzM83vsxw-u6jyBXIMF-2q0SccZ5paSCJknQcNFdKWttb_Ro3v2zX3Y3peyklGoDcqPlVbc8xx-Telr33xujxkV4zvHIXhDmKS1iwSVRmg-pxMpFYBFLOvJeNNmzmLE2O-6LCCmLbXzZ9oQHpFhfxT7Wbfw197FRJqwnI5cP3fvQ7HzzZ153P798fr7_1j8-fX24v3vsaYBN7cMEniUrvw5rPU6arfKBGcCwtGRhoKAnPzBNVmKwZkBjjFUIamI9Eujr7uHM9Ql37pDjjPnVJYzuTUj5xWGukfbslN6A9yFIOZqBIOBoLa5BGg4WCVVjDWcW5VRK5vCXB9KdKnAN-FaBO1XgzhW02O05xu3PY-TsCkVeiH3MTLUdEv8P-A2o_pMX</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Thiyagarajan, Ganesh Babu</creator><creator>Shanmugam, Vasu</creator><creator>Wilhelm, Michael</creator><creator>Mathur, Sanjay</creator><creator>Moodakare, Sahana B.</creator><creator>Kumar, Ravi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2453-1223</orcidid></search><sort><creationdate>202106</creationdate><title>TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries</title><author>Thiyagarajan, Ganesh Babu ; Shanmugam, Vasu ; Wilhelm, Michael ; Mathur, Sanjay ; Moodakare, Sahana B. ; Kumar, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Keratin derived carbon</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Precursor derived ceramics</topic><topic>Titanium niobate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiyagarajan, Ganesh Babu</creatorcontrib><creatorcontrib>Shanmugam, Vasu</creatorcontrib><creatorcontrib>Wilhelm, Michael</creatorcontrib><creatorcontrib>Mathur, Sanjay</creatorcontrib><creatorcontrib>Moodakare, Sahana B.</creatorcontrib><creatorcontrib>Kumar, Ravi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Open ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiyagarajan, Ganesh Babu</au><au>Shanmugam, Vasu</au><au>Wilhelm, Michael</au><au>Mathur, Sanjay</au><au>Moodakare, Sahana B.</au><au>Kumar, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries</atitle><jtitle>Open ceramics</jtitle><date>2021-06</date><risdate>2021</risdate><volume>6</volume><spage>100131</spage><pages>100131-</pages><artnum>100131</artnum><issn>2666-5395</issn><eissn>2666-5395</eissn><abstract>TiNb2O7/carbon nanocomposites synthesized through a simple, surfactant assisted precursor route is reported as a promising alternative anode material for lithium-ion batteries (LIBs). The carbon component of the nanocomposites is derived from an inexpensive and sustainable keratin rich biological source. The reinforcement of carbon in TiNb2O7 facilitated the formation of non-stoichiometric (Ti0.712Nb0.288)O2 crystalline phase, in addition to the stoichiometric TiNb2O7 phase. It also yielded a high specific surface area (~90 ​m2 ​g−1) and reduced crystallite size (~4 ​nm). Electrochemical results exemplified high reversible capacity of 356 mAh g−1 at 0.1 ​C and remarkable rate capability of ~26 mAh g−1 at ultra-high current rate of 32C. TiNb2O7/carbon nanocomposites also demonstrated remarkable cyclic stability with large capacity retention of 85% even after 50 cycles at 1 ​C. The experimental data attests the potential of TiNb2O7/keratin derived carbon nanocomposites as economically and environmentally viable promising anode material for LIBs. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.oceram.2021.100131</doi><orcidid>https://orcid.org/0000-0002-2453-1223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-5395
ispartof Open ceramics, 2021-06, Vol.6, p.100131, Article 100131
issn 2666-5395
2666-5395
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2381ddff00954c1fa966a7105ef6aca2
source ScienceDirect (Online service)
subjects Keratin derived carbon
Lithium-ion batteries
Nanocomposites
Precursor derived ceramics
Titanium niobate
title TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiNb2O7-Keratin%20derived%20carbon%20nanocomposites%20as%20novel%20anode%20materials%20for%20high-capacity%20lithium-ion%20batteries&rft.jtitle=Open%20ceramics&rft.au=Thiyagarajan,%20Ganesh%20Babu&rft.date=2021-06&rft.volume=6&rft.spage=100131&rft.pages=100131-&rft.artnum=100131&rft.issn=2666-5395&rft.eissn=2666-5395&rft_id=info:doi/10.1016/j.oceram.2021.100131&rft_dat=%3Celsevier_doaj_%3ES2666539521000778%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-fb1de0e2d7f739b3e62dfee115e06c614cf3bd4ecb60af654a55562a12be39c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true