Loading…
Multi-Color Enhanced Fluorescence Imaging of a Breast Cancer Cell with A Hole-Arrayed Plasmonic Chip
Breast cancer cells of MDA-MB-231 express various types of membrane proteins in the cell membrane. In this study, two types of membrane proteins in MDA-MB-231 cells were observed using a plasmonic chip with an epifluorescence microscope. The targeted membrane proteins were epithelial cell adhesion m...
Saved in:
Published in: | Micromachines (Basel) 2020-06, Vol.11 (6), p.604 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Breast cancer cells of MDA-MB-231 express various types of membrane proteins in the cell membrane. In this study, two types of membrane proteins in MDA-MB-231 cells were observed using a plasmonic chip with an epifluorescence microscope. The targeted membrane proteins were epithelial cell adhesion molecules (EpCAMs) and epidermal growth factor receptor (EGFR), and Alexa
488-EGFR antibody and allophycocyanin (APC)-labeled EpCAM antibody were applied to the fluorescent detection. The plasmonic chip used in this study is composed of a two-dimensional hole-array structure, which is expected to enhance the fluorescence at different resonance wavelengths due to two kinds of grating pitches in a square side and a diagonal direction. As a result of multi-color imaging, the enhancement factor of Alexa
488-EGFR and APC-EpCAM was 13 ± 2 and 12 ± 2 times greater on the plasmonic chip, respectively. The excited wavelength or emission wavelength of each fluorescent agent is due to consistency with plasmon resonance wavelength in the hole-arrayed chip. The multi-color fluorescence images of breast cancer cells were improved by the hole-arrayed plasmonic chip. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi11060604 |