Loading…

The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli

The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed on...

Full description

Saved in:
Bibliographic Details
Published in:Redox biology 2023-08, Vol.64, p.102800-102800, Article 102800
Main Authors: Knoke, Lisa R., Zimmermann, Jannik, Lupilov, Natalie, Schneider, Jannis F., Celebi, Beyzanur, Morgan, Bruce, Leichert, Lars I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93
cites cdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93
container_end_page 102800
container_issue
container_start_page 102800
container_title Redox biology
container_volume 64
creator Knoke, Lisa R.
Zimmermann, Jannik
Lupilov, Natalie
Schneider, Jannis F.
Celebi, Beyzanur
Morgan, Bruce
Leichert, Lars I.
description The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.
doi_str_mv 10.1016/j.redox.2023.102800
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23ab879427414116a4b54b45848aa989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221323172300201X</els_id><doaj_id>oai_doaj_org_article_23ab879427414116a4b54b45848aa989</doaj_id><sourcerecordid>2835275690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRCIVkO_AAl5yWYGv-0sEEJVgUqV2JS15dg3E0dJHOzMqPw9nkmp2g3e2Lo-j6tzquo9wTuCifzU7xL4-LCjmLIyoRrjV9UlpYRtKSPq9bP3RXWVc4_L0ZpTgt9WF0xxwpQUl1V_3wFKcQAUW7QfDotduhAnQGFCM6QwDzaPwaGzG-riCDEvNoeM7ORRfAjeLuEIaE5xgcJp4-DDtD_Rb7LrioLrgkUuDuFd9aa1Q4arx3tT_fp2c3_9Y3v38_vt9de7rRNULltKqQbRtEQyLynxBFvKhK6p0r62uGZSYqGUBNoyVwMWjNVauFYqr51qarapblddH21v5hRGm_6YaIM5D2LaG5uW4AYwlNlGq5rTkgcnRFreCN5wobm2ttYnrS-r1nxoRvAOpiXZ4YXoy58pdGYfj4ZgxnlddttUHx8VUvx9gLyYMWQHw2AniIdsqGaCKiFrXKBshboUc07QPvkQbE6tm96cezCn1s3aemF9eL7iE-dfxwXweQVACf0YIJnsAkwOfEjglpJK-K_BX-ROvow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835275690</pqid></control><display><type>article</type><title>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Knoke, Lisa R. ; Zimmermann, Jannik ; Lupilov, Natalie ; Schneider, Jannis F. ; Celebi, Beyzanur ; Morgan, Bruce ; Leichert, Lars I.</creator><creatorcontrib>Knoke, Lisa R. ; Zimmermann, Jannik ; Lupilov, Natalie ; Schneider, Jannis F. ; Celebi, Beyzanur ; Morgan, Bruce ; Leichert, Lars I.</creatorcontrib><description>The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.</description><identifier>ISSN: 2213-2317</identifier><identifier>EISSN: 2213-2317</identifier><identifier>DOI: 10.1016/j.redox.2023.102800</identifier><identifier>PMID: 37413765</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Disulfide ; Disulfides - chemistry ; DsbA ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Glutathione ; Glutathione - metabolism ; Glutathione Disulfide - metabolism ; Homeostasis ; Oxidation-Reduction ; Oxidative folding ; Oxidative Stress ; Periplasm ; Periplasm - metabolism ; Protein Disulfide-Isomerases - metabolism ; Protein Folding ; Proteins - metabolism ; Research Paper ; roGFP ; Sulfhydryl Compounds - metabolism</subject><ispartof>Redox biology, 2023-08, Vol.64, p.102800-102800, Article 102800</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</citedby><cites>FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</cites><orcidid>0000-0002-5666-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344953/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S221323172300201X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37413765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoke, Lisa R.</creatorcontrib><creatorcontrib>Zimmermann, Jannik</creatorcontrib><creatorcontrib>Lupilov, Natalie</creatorcontrib><creatorcontrib>Schneider, Jannis F.</creatorcontrib><creatorcontrib>Celebi, Beyzanur</creatorcontrib><creatorcontrib>Morgan, Bruce</creatorcontrib><creatorcontrib>Leichert, Lars I.</creatorcontrib><title>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</title><title>Redox biology</title><addtitle>Redox Biol</addtitle><description>The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.</description><subject>Disulfide</subject><subject>Disulfides - chemistry</subject><subject>DsbA</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Glutathione Disulfide - metabolism</subject><subject>Homeostasis</subject><subject>Oxidation-Reduction</subject><subject>Oxidative folding</subject><subject>Oxidative Stress</subject><subject>Periplasm</subject><subject>Periplasm - metabolism</subject><subject>Protein Disulfide-Isomerases - metabolism</subject><subject>Protein Folding</subject><subject>Proteins - metabolism</subject><subject>Research Paper</subject><subject>roGFP</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>2213-2317</issn><issn>2213-2317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uctu1DAUjRCIVkO_AAl5yWYGv-0sEEJVgUqV2JS15dg3E0dJHOzMqPw9nkmp2g3e2Lo-j6tzquo9wTuCifzU7xL4-LCjmLIyoRrjV9UlpYRtKSPq9bP3RXWVc4_L0ZpTgt9WF0xxwpQUl1V_3wFKcQAUW7QfDotduhAnQGFCM6QwDzaPwaGzG-riCDEvNoeM7ORRfAjeLuEIaE5xgcJp4-DDtD_Rb7LrioLrgkUuDuFd9aa1Q4arx3tT_fp2c3_9Y3v38_vt9de7rRNULltKqQbRtEQyLynxBFvKhK6p0r62uGZSYqGUBNoyVwMWjNVauFYqr51qarapblddH21v5hRGm_6YaIM5D2LaG5uW4AYwlNlGq5rTkgcnRFreCN5wobm2ttYnrS-r1nxoRvAOpiXZ4YXoy58pdGYfj4ZgxnlddttUHx8VUvx9gLyYMWQHw2AniIdsqGaCKiFrXKBshboUc07QPvkQbE6tm96cezCn1s3aemF9eL7iE-dfxwXweQVACf0YIJnsAkwOfEjglpJK-K_BX-ROvow</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Knoke, Lisa R.</creator><creator>Zimmermann, Jannik</creator><creator>Lupilov, Natalie</creator><creator>Schneider, Jannis F.</creator><creator>Celebi, Beyzanur</creator><creator>Morgan, Bruce</creator><creator>Leichert, Lars I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5666-9681</orcidid></search><sort><creationdate>20230801</creationdate><title>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</title><author>Knoke, Lisa R. ; Zimmermann, Jannik ; Lupilov, Natalie ; Schneider, Jannis F. ; Celebi, Beyzanur ; Morgan, Bruce ; Leichert, Lars I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Disulfide</topic><topic>Disulfides - chemistry</topic><topic>DsbA</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Glutathione Disulfide - metabolism</topic><topic>Homeostasis</topic><topic>Oxidation-Reduction</topic><topic>Oxidative folding</topic><topic>Oxidative Stress</topic><topic>Periplasm</topic><topic>Periplasm - metabolism</topic><topic>Protein Disulfide-Isomerases - metabolism</topic><topic>Protein Folding</topic><topic>Proteins - metabolism</topic><topic>Research Paper</topic><topic>roGFP</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoke, Lisa R.</creatorcontrib><creatorcontrib>Zimmermann, Jannik</creatorcontrib><creatorcontrib>Lupilov, Natalie</creatorcontrib><creatorcontrib>Schneider, Jannis F.</creatorcontrib><creatorcontrib>Celebi, Beyzanur</creatorcontrib><creatorcontrib>Morgan, Bruce</creatorcontrib><creatorcontrib>Leichert, Lars I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Redox biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoke, Lisa R.</au><au>Zimmermann, Jannik</au><au>Lupilov, Natalie</au><au>Schneider, Jannis F.</au><au>Celebi, Beyzanur</au><au>Morgan, Bruce</au><au>Leichert, Lars I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</atitle><jtitle>Redox biology</jtitle><addtitle>Redox Biol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>64</volume><spage>102800</spage><epage>102800</epage><pages>102800-102800</pages><artnum>102800</artnum><issn>2213-2317</issn><eissn>2213-2317</eissn><abstract>The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37413765</pmid><doi>10.1016/j.redox.2023.102800</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5666-9681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-2317
ispartof Redox biology, 2023-08, Vol.64, p.102800-102800, Article 102800
issn 2213-2317
2213-2317
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_23ab879427414116a4b54b45848aa989
source Elsevier ScienceDirect Journals; PubMed Central
subjects Disulfide
Disulfides - chemistry
DsbA
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Glutathione
Glutathione - metabolism
Glutathione Disulfide - metabolism
Homeostasis
Oxidation-Reduction
Oxidative folding
Oxidative Stress
Periplasm
Periplasm - metabolism
Protein Disulfide-Isomerases - metabolism
Protein Folding
Proteins - metabolism
Research Paper
roGFP
Sulfhydryl Compounds - metabolism
title The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20glutathione%20in%20periplasmic%20redox%20homeostasis%20and%20oxidative%20protein%20folding%20in%20Escherichia%20coli&rft.jtitle=Redox%20biology&rft.au=Knoke,%20Lisa%20R.&rft.date=2023-08-01&rft.volume=64&rft.spage=102800&rft.epage=102800&rft.pages=102800-102800&rft.artnum=102800&rft.issn=2213-2317&rft.eissn=2213-2317&rft_id=info:doi/10.1016/j.redox.2023.102800&rft_dat=%3Cproquest_doaj_%3E2835275690%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835275690&rft_id=info:pmid/37413765&rfr_iscdi=true