Loading…
The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli
The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed on...
Saved in:
Published in: | Redox biology 2023-08, Vol.64, p.102800-102800, Article 102800 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93 |
container_end_page | 102800 |
container_issue | |
container_start_page | 102800 |
container_title | Redox biology |
container_volume | 64 |
creator | Knoke, Lisa R. Zimmermann, Jannik Lupilov, Natalie Schneider, Jannis F. Celebi, Beyzanur Morgan, Bruce Leichert, Lars I. |
description | The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm. |
doi_str_mv | 10.1016/j.redox.2023.102800 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23ab879427414116a4b54b45848aa989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221323172300201X</els_id><doaj_id>oai_doaj_org_article_23ab879427414116a4b54b45848aa989</doaj_id><sourcerecordid>2835275690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRCIVkO_AAl5yWYGv-0sEEJVgUqV2JS15dg3E0dJHOzMqPw9nkmp2g3e2Lo-j6tzquo9wTuCifzU7xL4-LCjmLIyoRrjV9UlpYRtKSPq9bP3RXWVc4_L0ZpTgt9WF0xxwpQUl1V_3wFKcQAUW7QfDotduhAnQGFCM6QwDzaPwaGzG-riCDEvNoeM7ORRfAjeLuEIaE5xgcJp4-DDtD_Rb7LrioLrgkUuDuFd9aa1Q4arx3tT_fp2c3_9Y3v38_vt9de7rRNULltKqQbRtEQyLynxBFvKhK6p0r62uGZSYqGUBNoyVwMWjNVauFYqr51qarapblddH21v5hRGm_6YaIM5D2LaG5uW4AYwlNlGq5rTkgcnRFreCN5wobm2ttYnrS-r1nxoRvAOpiXZ4YXoy58pdGYfj4ZgxnlddttUHx8VUvx9gLyYMWQHw2AniIdsqGaCKiFrXKBshboUc07QPvkQbE6tm96cezCn1s3aemF9eL7iE-dfxwXweQVACf0YIJnsAkwOfEjglpJK-K_BX-ROvow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835275690</pqid></control><display><type>article</type><title>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Knoke, Lisa R. ; Zimmermann, Jannik ; Lupilov, Natalie ; Schneider, Jannis F. ; Celebi, Beyzanur ; Morgan, Bruce ; Leichert, Lars I.</creator><creatorcontrib>Knoke, Lisa R. ; Zimmermann, Jannik ; Lupilov, Natalie ; Schneider, Jannis F. ; Celebi, Beyzanur ; Morgan, Bruce ; Leichert, Lars I.</creatorcontrib><description>The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.</description><identifier>ISSN: 2213-2317</identifier><identifier>EISSN: 2213-2317</identifier><identifier>DOI: 10.1016/j.redox.2023.102800</identifier><identifier>PMID: 37413765</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Disulfide ; Disulfides - chemistry ; DsbA ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Glutathione ; Glutathione - metabolism ; Glutathione Disulfide - metabolism ; Homeostasis ; Oxidation-Reduction ; Oxidative folding ; Oxidative Stress ; Periplasm ; Periplasm - metabolism ; Protein Disulfide-Isomerases - metabolism ; Protein Folding ; Proteins - metabolism ; Research Paper ; roGFP ; Sulfhydryl Compounds - metabolism</subject><ispartof>Redox biology, 2023-08, Vol.64, p.102800-102800, Article 102800</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</citedby><cites>FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</cites><orcidid>0000-0002-5666-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344953/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S221323172300201X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37413765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoke, Lisa R.</creatorcontrib><creatorcontrib>Zimmermann, Jannik</creatorcontrib><creatorcontrib>Lupilov, Natalie</creatorcontrib><creatorcontrib>Schneider, Jannis F.</creatorcontrib><creatorcontrib>Celebi, Beyzanur</creatorcontrib><creatorcontrib>Morgan, Bruce</creatorcontrib><creatorcontrib>Leichert, Lars I.</creatorcontrib><title>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</title><title>Redox biology</title><addtitle>Redox Biol</addtitle><description>The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.</description><subject>Disulfide</subject><subject>Disulfides - chemistry</subject><subject>DsbA</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Glutathione Disulfide - metabolism</subject><subject>Homeostasis</subject><subject>Oxidation-Reduction</subject><subject>Oxidative folding</subject><subject>Oxidative Stress</subject><subject>Periplasm</subject><subject>Periplasm - metabolism</subject><subject>Protein Disulfide-Isomerases - metabolism</subject><subject>Protein Folding</subject><subject>Proteins - metabolism</subject><subject>Research Paper</subject><subject>roGFP</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>2213-2317</issn><issn>2213-2317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uctu1DAUjRCIVkO_AAl5yWYGv-0sEEJVgUqV2JS15dg3E0dJHOzMqPw9nkmp2g3e2Lo-j6tzquo9wTuCifzU7xL4-LCjmLIyoRrjV9UlpYRtKSPq9bP3RXWVc4_L0ZpTgt9WF0xxwpQUl1V_3wFKcQAUW7QfDotduhAnQGFCM6QwDzaPwaGzG-riCDEvNoeM7ORRfAjeLuEIaE5xgcJp4-DDtD_Rb7LrioLrgkUuDuFd9aa1Q4arx3tT_fp2c3_9Y3v38_vt9de7rRNULltKqQbRtEQyLynxBFvKhK6p0r62uGZSYqGUBNoyVwMWjNVauFYqr51qarapblddH21v5hRGm_6YaIM5D2LaG5uW4AYwlNlGq5rTkgcnRFreCN5wobm2ttYnrS-r1nxoRvAOpiXZ4YXoy58pdGYfj4ZgxnlddttUHx8VUvx9gLyYMWQHw2AniIdsqGaCKiFrXKBshboUc07QPvkQbE6tm96cezCn1s3aemF9eL7iE-dfxwXweQVACf0YIJnsAkwOfEjglpJK-K_BX-ROvow</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Knoke, Lisa R.</creator><creator>Zimmermann, Jannik</creator><creator>Lupilov, Natalie</creator><creator>Schneider, Jannis F.</creator><creator>Celebi, Beyzanur</creator><creator>Morgan, Bruce</creator><creator>Leichert, Lars I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5666-9681</orcidid></search><sort><creationdate>20230801</creationdate><title>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</title><author>Knoke, Lisa R. ; Zimmermann, Jannik ; Lupilov, Natalie ; Schneider, Jannis F. ; Celebi, Beyzanur ; Morgan, Bruce ; Leichert, Lars I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Disulfide</topic><topic>Disulfides - chemistry</topic><topic>DsbA</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Glutathione Disulfide - metabolism</topic><topic>Homeostasis</topic><topic>Oxidation-Reduction</topic><topic>Oxidative folding</topic><topic>Oxidative Stress</topic><topic>Periplasm</topic><topic>Periplasm - metabolism</topic><topic>Protein Disulfide-Isomerases - metabolism</topic><topic>Protein Folding</topic><topic>Proteins - metabolism</topic><topic>Research Paper</topic><topic>roGFP</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoke, Lisa R.</creatorcontrib><creatorcontrib>Zimmermann, Jannik</creatorcontrib><creatorcontrib>Lupilov, Natalie</creatorcontrib><creatorcontrib>Schneider, Jannis F.</creatorcontrib><creatorcontrib>Celebi, Beyzanur</creatorcontrib><creatorcontrib>Morgan, Bruce</creatorcontrib><creatorcontrib>Leichert, Lars I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Redox biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoke, Lisa R.</au><au>Zimmermann, Jannik</au><au>Lupilov, Natalie</au><au>Schneider, Jannis F.</au><au>Celebi, Beyzanur</au><au>Morgan, Bruce</au><au>Leichert, Lars I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli</atitle><jtitle>Redox biology</jtitle><addtitle>Redox Biol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>64</volume><spage>102800</spage><epage>102800</epage><pages>102800-102800</pages><artnum>102800</artnum><issn>2213-2317</issn><eissn>2213-2317</eissn><abstract>The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo “steady state” redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from −228 mV to a more reducing −243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37413765</pmid><doi>10.1016/j.redox.2023.102800</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5666-9681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-2317 |
ispartof | Redox biology, 2023-08, Vol.64, p.102800-102800, Article 102800 |
issn | 2213-2317 2213-2317 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_23ab879427414116a4b54b45848aa989 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Disulfide Disulfides - chemistry DsbA Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - metabolism Glutathione Glutathione - metabolism Glutathione Disulfide - metabolism Homeostasis Oxidation-Reduction Oxidative folding Oxidative Stress Periplasm Periplasm - metabolism Protein Disulfide-Isomerases - metabolism Protein Folding Proteins - metabolism Research Paper roGFP Sulfhydryl Compounds - metabolism |
title | The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20glutathione%20in%20periplasmic%20redox%20homeostasis%20and%20oxidative%20protein%20folding%20in%20Escherichia%20coli&rft.jtitle=Redox%20biology&rft.au=Knoke,%20Lisa%20R.&rft.date=2023-08-01&rft.volume=64&rft.spage=102800&rft.epage=102800&rft.pages=102800-102800&rft.artnum=102800&rft.issn=2213-2317&rft.eissn=2213-2317&rft_id=info:doi/10.1016/j.redox.2023.102800&rft_dat=%3Cproquest_doaj_%3E2835275690%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-2228e5bf163d621d10a23589278d9a0936605776e2f3c9e0533985cf67d8c7b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2835275690&rft_id=info:pmid/37413765&rfr_iscdi=true |