Loading…

Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors

The electronic, sensing, and transport properties of doped square hexagonal boron nitride (shBN) quantum dots were investigated using density functional theory calculations. The electronic and magnetic properties were controlled by substitutional doping. For instance, heterodoping with Si and C atom...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2022-11, Vol.12 (11), p.1684
Main Authors: Abdelsalam, Hazem, Saroka, Vasil A., Atta, Mohamed M., Abd-Elkader, Omar H., Zaghloul, Nouf S., Zhang, Qinfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electronic, sensing, and transport properties of doped square hexagonal boron nitride (shBN) quantum dots were investigated using density functional theory calculations. The electronic and magnetic properties were controlled by substitutional doping. For instance, heterodoping with Si and C atoms decreased the energy gap to half its value and converted the insulator shBN quantum dot to a semiconductor. Doping with a single O atom transformed the dot to spin half metal with a tiny spin-up energy gap and a wide spin-down gap. Moreover, doping and vacancies formed low-energy interactive molecular orbitals which were important for boosting sensing properties. The unmodified shBN quantum dot showed moderate physical adsorption of NO2, acetone, CH4, and ethanol. This adsorption was elevated by doping due to interactions between electrons in the low-energy orbitals from the doped-shBN dot and π-bond electrons from the gas. The transport properties also showed a significant change in the current by doping. For instance, the spin-up current was very high compared to the spin-down current in the shBN dots doped with an O atom, confirming the formation of spin half metal. The spin-up/down currents were strongly affected by gas adsorption, which can be used as an indicator of the sensing process.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12111684