Loading…

Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications

The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells tow...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2018-08, Vol.5 (3), p.68
Main Authors: Roy, Trina, Maity, Priti Prasanna, Rameshbabu, Arun Prabhu, Das, Bodhisatwa, John, Athira, Dutta, Abir, Ghorai, Sanjoy Kumar, Chattopadhyay, Santanu, Dhara, Santanu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033
cites cdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033
container_end_page
container_issue 3
container_start_page 68
container_title Bioengineering (Basel)
container_volume 5
creator Roy, Trina
Maity, Priti Prasanna
Rameshbabu, Arun Prabhu
Das, Bodhisatwa
John, Athira
Dutta, Abir
Ghorai, Sanjoy Kumar
Chattopadhyay, Santanu
Dhara, Santanu
description The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.
doi_str_mv 10.3390/bioengineering5030068
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23c6e5c7cc3a4789b4b5a8c0a54485b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23c6e5c7cc3a4789b4b5a8c0a54485b2</doaj_id><sourcerecordid>2121379809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</originalsourceid><addsrcrecordid>eNptkl9vFCEUxSdGY5vaj6Ah8XkUuDDDvJjUzbY2adSk9Zkw_NmysjDCTJM--8VL3VrbxCdu4JzfPcBtmrcEfwAY8MfRJxs3PlqbfdxwDBh34kVzSAF3LQfOXj6pD5rjUrYYYwKU0469bg6g1owzOGx-r1K27eW1DQF9VTE5P-a0FHSplXMpGPRZFWtQiuh7CrdaTTkFpecUq8mHn-j0Xu8jWu-WUHyVrYPVc05l8jHWbMiljK58KYtF63-R0ck0Ba_VXC3lTfPKqVDs8cN61Pw4XV-tvrQX387OVycXrWYUi9YJ6AasGThitFbDaGF0RFHRj9p0hijdCxDW9rhnQKju2QDGUMN6Z5nFAEfN-Z5rktrKKfudyrcyKS__bKS8kSrPXgcrKejOct1rDYr1YhjZyJXQWHHGBB9pZX3as6Zl3FmjbZyzCs-gz0-iv5abdCM70rF-EBXw_gGQ06_Flllu05Jjvb-khBKoGjxUFd-rdH3Skq177ECwvB8F-d9RqL53T-M9uv5-PNwB-jy3PA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121379809</pqid></control><display><type>article</type><title>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Roy, Trina ; Maity, Priti Prasanna ; Rameshbabu, Arun Prabhu ; Das, Bodhisatwa ; John, Athira ; Dutta, Abir ; Ghorai, Sanjoy Kumar ; Chattopadhyay, Santanu ; Dhara, Santanu</creator><creatorcontrib>Roy, Trina ; Maity, Priti Prasanna ; Rameshbabu, Arun Prabhu ; Das, Bodhisatwa ; John, Athira ; Dutta, Abir ; Ghorai, Sanjoy Kumar ; Chattopadhyay, Santanu ; Dhara, Santanu</creatorcontrib><description>The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering5030068</identifier><identifier>PMID: 30134543</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>amphiphilic ; Binding sites ; Biocompatibility ; Biodegradability ; Bioengineering ; Biological activity ; Biomaterials ; Biomedical materials ; Biopolymers ; Cellular structure ; Collagen ; Contact angle ; Core-shell structure ; Electrospinning ; emulsion ; Emulsion polymerization ; Extracellular matrix ; Growth factors ; hydrophilicity ; Materials selection ; Molecular weight ; Nanofibers ; Polycaprolactone ; Polymer blends ; Proteins ; Regeneration (physiology) ; Regenerative medicine ; Scaffolds ; Secretion ; Silk ; Silk fibroin ; Tissue engineering ; Viscosity ; Wound healing</subject><ispartof>Bioengineering (Basel), 2018-08, Vol.5 (3), p.68</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</citedby><cites>FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2121379809/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2121379809?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30134543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Trina</creatorcontrib><creatorcontrib>Maity, Priti Prasanna</creatorcontrib><creatorcontrib>Rameshbabu, Arun Prabhu</creatorcontrib><creatorcontrib>Das, Bodhisatwa</creatorcontrib><creatorcontrib>John, Athira</creatorcontrib><creatorcontrib>Dutta, Abir</creatorcontrib><creatorcontrib>Ghorai, Sanjoy Kumar</creatorcontrib><creatorcontrib>Chattopadhyay, Santanu</creatorcontrib><creatorcontrib>Dhara, Santanu</creatorcontrib><title>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.</description><subject>amphiphilic</subject><subject>Binding sites</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Bioengineering</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cellular structure</subject><subject>Collagen</subject><subject>Contact angle</subject><subject>Core-shell structure</subject><subject>Electrospinning</subject><subject>emulsion</subject><subject>Emulsion polymerization</subject><subject>Extracellular matrix</subject><subject>Growth factors</subject><subject>hydrophilicity</subject><subject>Materials selection</subject><subject>Molecular weight</subject><subject>Nanofibers</subject><subject>Polycaprolactone</subject><subject>Polymer blends</subject><subject>Proteins</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Scaffolds</subject><subject>Secretion</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Tissue engineering</subject><subject>Viscosity</subject><subject>Wound healing</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl9vFCEUxSdGY5vaj6Ah8XkUuDDDvJjUzbY2adSk9Zkw_NmysjDCTJM--8VL3VrbxCdu4JzfPcBtmrcEfwAY8MfRJxs3PlqbfdxwDBh34kVzSAF3LQfOXj6pD5rjUrYYYwKU0469bg6g1owzOGx-r1K27eW1DQF9VTE5P-a0FHSplXMpGPRZFWtQiuh7CrdaTTkFpecUq8mHn-j0Xu8jWu-WUHyVrYPVc05l8jHWbMiljK58KYtF63-R0ck0Ba_VXC3lTfPKqVDs8cN61Pw4XV-tvrQX387OVycXrWYUi9YJ6AasGThitFbDaGF0RFHRj9p0hijdCxDW9rhnQKju2QDGUMN6Z5nFAEfN-Z5rktrKKfudyrcyKS__bKS8kSrPXgcrKejOct1rDYr1YhjZyJXQWHHGBB9pZX3as6Zl3FmjbZyzCs-gz0-iv5abdCM70rF-EBXw_gGQ06_Flllu05Jjvb-khBKoGjxUFd-rdH3Skq177ECwvB8F-d9RqL53T-M9uv5-PNwB-jy3PA</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Roy, Trina</creator><creator>Maity, Priti Prasanna</creator><creator>Rameshbabu, Arun Prabhu</creator><creator>Das, Bodhisatwa</creator><creator>John, Athira</creator><creator>Dutta, Abir</creator><creator>Ghorai, Sanjoy Kumar</creator><creator>Chattopadhyay, Santanu</creator><creator>Dhara, Santanu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180821</creationdate><title>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</title><author>Roy, Trina ; Maity, Priti Prasanna ; Rameshbabu, Arun Prabhu ; Das, Bodhisatwa ; John, Athira ; Dutta, Abir ; Ghorai, Sanjoy Kumar ; Chattopadhyay, Santanu ; Dhara, Santanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>amphiphilic</topic><topic>Binding sites</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Bioengineering</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cellular structure</topic><topic>Collagen</topic><topic>Contact angle</topic><topic>Core-shell structure</topic><topic>Electrospinning</topic><topic>emulsion</topic><topic>Emulsion polymerization</topic><topic>Extracellular matrix</topic><topic>Growth factors</topic><topic>hydrophilicity</topic><topic>Materials selection</topic><topic>Molecular weight</topic><topic>Nanofibers</topic><topic>Polycaprolactone</topic><topic>Polymer blends</topic><topic>Proteins</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Scaffolds</topic><topic>Secretion</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Tissue engineering</topic><topic>Viscosity</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Trina</creatorcontrib><creatorcontrib>Maity, Priti Prasanna</creatorcontrib><creatorcontrib>Rameshbabu, Arun Prabhu</creatorcontrib><creatorcontrib>Das, Bodhisatwa</creatorcontrib><creatorcontrib>John, Athira</creatorcontrib><creatorcontrib>Dutta, Abir</creatorcontrib><creatorcontrib>Ghorai, Sanjoy Kumar</creatorcontrib><creatorcontrib>Chattopadhyay, Santanu</creatorcontrib><creatorcontrib>Dhara, Santanu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Trina</au><au>Maity, Priti Prasanna</au><au>Rameshbabu, Arun Prabhu</au><au>Das, Bodhisatwa</au><au>John, Athira</au><au>Dutta, Abir</au><au>Ghorai, Sanjoy Kumar</au><au>Chattopadhyay, Santanu</au><au>Dhara, Santanu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>5</volume><issue>3</issue><spage>68</spage><pages>68-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30134543</pmid><doi>10.3390/bioengineering5030068</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2018-08, Vol.5 (3), p.68
issn 2306-5354
2306-5354
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_23c6e5c7cc3a4789b4b5a8c0a54485b2
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects amphiphilic
Binding sites
Biocompatibility
Biodegradability
Bioengineering
Biological activity
Biomaterials
Biomedical materials
Biopolymers
Cellular structure
Collagen
Contact angle
Core-shell structure
Electrospinning
emulsion
Emulsion polymerization
Extracellular matrix
Growth factors
hydrophilicity
Materials selection
Molecular weight
Nanofibers
Polycaprolactone
Polymer blends
Proteins
Regeneration (physiology)
Regenerative medicine
Scaffolds
Secretion
Silk
Silk fibroin
Tissue engineering
Viscosity
Wound healing
title Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core-Shell%20Nanofibrous%20Scaffold%20Based%20on%20Polycaprolactone-Silk%20Fibroin%20Emulsion%20Electrospinning%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Bioengineering%20(Basel)&rft.au=Roy,%20Trina&rft.date=2018-08-21&rft.volume=5&rft.issue=3&rft.spage=68&rft.pages=68-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering5030068&rft_dat=%3Cproquest_doaj_%3E2121379809%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121379809&rft_id=info:pmid/30134543&rfr_iscdi=true