Loading…
Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications
The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells tow...
Saved in:
Published in: | Bioengineering (Basel) 2018-08, Vol.5 (3), p.68 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033 |
---|---|
cites | cdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033 |
container_end_page | |
container_issue | 3 |
container_start_page | 68 |
container_title | Bioengineering (Basel) |
container_volume | 5 |
creator | Roy, Trina Maity, Priti Prasanna Rameshbabu, Arun Prabhu Das, Bodhisatwa John, Athira Dutta, Abir Ghorai, Sanjoy Kumar Chattopadhyay, Santanu Dhara, Santanu |
description | The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer. |
doi_str_mv | 10.3390/bioengineering5030068 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23c6e5c7cc3a4789b4b5a8c0a54485b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23c6e5c7cc3a4789b4b5a8c0a54485b2</doaj_id><sourcerecordid>2121379809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</originalsourceid><addsrcrecordid>eNptkl9vFCEUxSdGY5vaj6Ah8XkUuDDDvJjUzbY2adSk9Zkw_NmysjDCTJM--8VL3VrbxCdu4JzfPcBtmrcEfwAY8MfRJxs3PlqbfdxwDBh34kVzSAF3LQfOXj6pD5rjUrYYYwKU0469bg6g1owzOGx-r1K27eW1DQF9VTE5P-a0FHSplXMpGPRZFWtQiuh7CrdaTTkFpecUq8mHn-j0Xu8jWu-WUHyVrYPVc05l8jHWbMiljK58KYtF63-R0ck0Ba_VXC3lTfPKqVDs8cN61Pw4XV-tvrQX387OVycXrWYUi9YJ6AasGThitFbDaGF0RFHRj9p0hijdCxDW9rhnQKju2QDGUMN6Z5nFAEfN-Z5rktrKKfudyrcyKS__bKS8kSrPXgcrKejOct1rDYr1YhjZyJXQWHHGBB9pZX3as6Zl3FmjbZyzCs-gz0-iv5abdCM70rF-EBXw_gGQ06_Flllu05Jjvb-khBKoGjxUFd-rdH3Skq177ECwvB8F-d9RqL53T-M9uv5-PNwB-jy3PA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121379809</pqid></control><display><type>article</type><title>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Roy, Trina ; Maity, Priti Prasanna ; Rameshbabu, Arun Prabhu ; Das, Bodhisatwa ; John, Athira ; Dutta, Abir ; Ghorai, Sanjoy Kumar ; Chattopadhyay, Santanu ; Dhara, Santanu</creator><creatorcontrib>Roy, Trina ; Maity, Priti Prasanna ; Rameshbabu, Arun Prabhu ; Das, Bodhisatwa ; John, Athira ; Dutta, Abir ; Ghorai, Sanjoy Kumar ; Chattopadhyay, Santanu ; Dhara, Santanu</creatorcontrib><description>The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering5030068</identifier><identifier>PMID: 30134543</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>amphiphilic ; Binding sites ; Biocompatibility ; Biodegradability ; Bioengineering ; Biological activity ; Biomaterials ; Biomedical materials ; Biopolymers ; Cellular structure ; Collagen ; Contact angle ; Core-shell structure ; Electrospinning ; emulsion ; Emulsion polymerization ; Extracellular matrix ; Growth factors ; hydrophilicity ; Materials selection ; Molecular weight ; Nanofibers ; Polycaprolactone ; Polymer blends ; Proteins ; Regeneration (physiology) ; Regenerative medicine ; Scaffolds ; Secretion ; Silk ; Silk fibroin ; Tissue engineering ; Viscosity ; Wound healing</subject><ispartof>Bioengineering (Basel), 2018-08, Vol.5 (3), p.68</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</citedby><cites>FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2121379809/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2121379809?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30134543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Trina</creatorcontrib><creatorcontrib>Maity, Priti Prasanna</creatorcontrib><creatorcontrib>Rameshbabu, Arun Prabhu</creatorcontrib><creatorcontrib>Das, Bodhisatwa</creatorcontrib><creatorcontrib>John, Athira</creatorcontrib><creatorcontrib>Dutta, Abir</creatorcontrib><creatorcontrib>Ghorai, Sanjoy Kumar</creatorcontrib><creatorcontrib>Chattopadhyay, Santanu</creatorcontrib><creatorcontrib>Dhara, Santanu</creatorcontrib><title>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.</description><subject>amphiphilic</subject><subject>Binding sites</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Bioengineering</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cellular structure</subject><subject>Collagen</subject><subject>Contact angle</subject><subject>Core-shell structure</subject><subject>Electrospinning</subject><subject>emulsion</subject><subject>Emulsion polymerization</subject><subject>Extracellular matrix</subject><subject>Growth factors</subject><subject>hydrophilicity</subject><subject>Materials selection</subject><subject>Molecular weight</subject><subject>Nanofibers</subject><subject>Polycaprolactone</subject><subject>Polymer blends</subject><subject>Proteins</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Scaffolds</subject><subject>Secretion</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Tissue engineering</subject><subject>Viscosity</subject><subject>Wound healing</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl9vFCEUxSdGY5vaj6Ah8XkUuDDDvJjUzbY2adSk9Zkw_NmysjDCTJM--8VL3VrbxCdu4JzfPcBtmrcEfwAY8MfRJxs3PlqbfdxwDBh34kVzSAF3LQfOXj6pD5rjUrYYYwKU0469bg6g1owzOGx-r1K27eW1DQF9VTE5P-a0FHSplXMpGPRZFWtQiuh7CrdaTTkFpecUq8mHn-j0Xu8jWu-WUHyVrYPVc05l8jHWbMiljK58KYtF63-R0ck0Ba_VXC3lTfPKqVDs8cN61Pw4XV-tvrQX387OVycXrWYUi9YJ6AasGThitFbDaGF0RFHRj9p0hijdCxDW9rhnQKju2QDGUMN6Z5nFAEfN-Z5rktrKKfudyrcyKS__bKS8kSrPXgcrKejOct1rDYr1YhjZyJXQWHHGBB9pZX3as6Zl3FmjbZyzCs-gz0-iv5abdCM70rF-EBXw_gGQ06_Flllu05Jjvb-khBKoGjxUFd-rdH3Skq177ECwvB8F-d9RqL53T-M9uv5-PNwB-jy3PA</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Roy, Trina</creator><creator>Maity, Priti Prasanna</creator><creator>Rameshbabu, Arun Prabhu</creator><creator>Das, Bodhisatwa</creator><creator>John, Athira</creator><creator>Dutta, Abir</creator><creator>Ghorai, Sanjoy Kumar</creator><creator>Chattopadhyay, Santanu</creator><creator>Dhara, Santanu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180821</creationdate><title>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</title><author>Roy, Trina ; Maity, Priti Prasanna ; Rameshbabu, Arun Prabhu ; Das, Bodhisatwa ; John, Athira ; Dutta, Abir ; Ghorai, Sanjoy Kumar ; Chattopadhyay, Santanu ; Dhara, Santanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>amphiphilic</topic><topic>Binding sites</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Bioengineering</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cellular structure</topic><topic>Collagen</topic><topic>Contact angle</topic><topic>Core-shell structure</topic><topic>Electrospinning</topic><topic>emulsion</topic><topic>Emulsion polymerization</topic><topic>Extracellular matrix</topic><topic>Growth factors</topic><topic>hydrophilicity</topic><topic>Materials selection</topic><topic>Molecular weight</topic><topic>Nanofibers</topic><topic>Polycaprolactone</topic><topic>Polymer blends</topic><topic>Proteins</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Scaffolds</topic><topic>Secretion</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Tissue engineering</topic><topic>Viscosity</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Trina</creatorcontrib><creatorcontrib>Maity, Priti Prasanna</creatorcontrib><creatorcontrib>Rameshbabu, Arun Prabhu</creatorcontrib><creatorcontrib>Das, Bodhisatwa</creatorcontrib><creatorcontrib>John, Athira</creatorcontrib><creatorcontrib>Dutta, Abir</creatorcontrib><creatorcontrib>Ghorai, Sanjoy Kumar</creatorcontrib><creatorcontrib>Chattopadhyay, Santanu</creatorcontrib><creatorcontrib>Dhara, Santanu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Trina</au><au>Maity, Priti Prasanna</au><au>Rameshbabu, Arun Prabhu</au><au>Das, Bodhisatwa</au><au>John, Athira</au><au>Dutta, Abir</au><au>Ghorai, Sanjoy Kumar</au><au>Chattopadhyay, Santanu</au><au>Dhara, Santanu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2018-08-21</date><risdate>2018</risdate><volume>5</volume><issue>3</issue><spage>68</spage><pages>68-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>The vast domain of regenerative medicine comprises complex interactions between specific cells' extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and 'nature's wonder' biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions' stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30134543</pmid><doi>10.3390/bioengineering5030068</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2018-08, Vol.5 (3), p.68 |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_23c6e5c7cc3a4789b4b5a8c0a54485b2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | amphiphilic Binding sites Biocompatibility Biodegradability Bioengineering Biological activity Biomaterials Biomedical materials Biopolymers Cellular structure Collagen Contact angle Core-shell structure Electrospinning emulsion Emulsion polymerization Extracellular matrix Growth factors hydrophilicity Materials selection Molecular weight Nanofibers Polycaprolactone Polymer blends Proteins Regeneration (physiology) Regenerative medicine Scaffolds Secretion Silk Silk fibroin Tissue engineering Viscosity Wound healing |
title | Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core-Shell%20Nanofibrous%20Scaffold%20Based%20on%20Polycaprolactone-Silk%20Fibroin%20Emulsion%20Electrospinning%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Bioengineering%20(Basel)&rft.au=Roy,%20Trina&rft.date=2018-08-21&rft.volume=5&rft.issue=3&rft.spage=68&rft.pages=68-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering5030068&rft_dat=%3Cproquest_doaj_%3E2121379809%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4208-f83690c43f1dcca9be3bf1a287bcd6d1ac7838ee7074312c7493dd2d47fe4e033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121379809&rft_id=info:pmid/30134543&rfr_iscdi=true |