Loading…

Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L

Salinity is a significant abiotic stress for crop plants and a threat to global food security. Optimizing yield without adversely affecting the ecosystem is necessary for a sustainable agriculture. Silicon and plant growth-promoting bacteria were reported for mitigating several abiotic and biotic st...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2021-03, Vol.11 (3), p.272
Main Authors: Kubi, Happy Anita Appiah, Khan, Muhammad Aaqil, Adhikari, Arjun, Imran, Muhammad, Kang, Sang-Mo, Hamayun, Muhammad, Lee, In-Jung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163
cites cdi_FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163
container_end_page
container_issue 3
container_start_page 272
container_title Agriculture (Basel)
container_volume 11
creator Kubi, Happy Anita Appiah
Khan, Muhammad Aaqil
Adhikari, Arjun
Imran, Muhammad
Kang, Sang-Mo
Hamayun, Muhammad
Lee, In-Jung
description Salinity is a significant abiotic stress for crop plants and a threat to global food security. Optimizing yield without adversely affecting the ecosystem is necessary for a sustainable agriculture. Silicon and plant growth-promoting bacteria were reported for mitigating several abiotic and biotic stress in plants. In our study, we identified the salt-tolerant rhizobacterium Pseudomonas psychrotolerans CS51. This species produces several plant-growth-promoting biochemicals like indole-3-acetic acid (33 ± 1.8 ng/mL) and gibberellic acid (GA3; 38 ± 1.3 and GA4; 23 ± 1.2 ng/mL) in Luria-Bertani(LB) media, and LB media spiked with 200 mM NaCl (indole-3-acetic acid(IAA); 17.6 ± 0.4 ng/mL, GA3; 21 ± 0.9 and GA4; 19 ± 1.0 ng/mL). In the current study, we aimed to investigate the effect of isolate CS51 and exogenous silicon (3 mM) on maize under salinity stress (200 mM). Our results showed that the sole application of isolate CS51, Si, and combined CS51 + Si significantly enhanced maize biomass and chlorophyll content under normal and salinity stress. Phytohormonal results showed that salinity stress increased abscisic acid (ABA; three folds) and jasmonic acid (JA; 49.20%). However, the sole and combined isolate CS51 + Si application markedly reduced ABA (1.5 folds) and JA content (14.89%). Besides, the sole and isolate CS51 + Si co-application strengthened the antioxidant system, such as flavonoid (97%) and polyphenol (19.64%), and lowered the proline content (57.69%) under NaCl stress. Similarly, the CS51 and Si inoculation (solely or combined) significantly enhanced the Si uptake (4 folds) and reduced the Na+ uptake (42.30%) in maize plants under NaCl stress. In conclusion, the current finding suggests that combining CS51 with Si can be used against salinity stress in maize plants and may be commercialized as a biofertilizer.
doi_str_mv 10.3390/agriculture11030272
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23ccc0f3eb944122ac31c519479bad27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23ccc0f3eb944122ac31c519479bad27</doaj_id><sourcerecordid>2522840454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163</originalsourceid><addsrcrecordid>eNptkd9LAzEMxw9RcOj-Al8KPp-26f3qowydg4nD0xdfSq7Xu3XcrrPtIfOv93QiPhgICUn4JOEbRReMXnEu6DW2zqihC4PTjFFOIYejaAI0z2Oa5HD8Jz-Npt5v6GiC8YJmk2goTWeU7Qn2NVl12Acyd_Y9rOOVs1sbTN-Sp7X5sBWqoJ1BsvJ6qMdWj57s_F6tnQ220w57T2ZlysiDCabFoD0psQukDE57T0xPXjWSLe49WZ5HJw12Xk9_4ln0cnf7PLuPl4_zxexmGSteFCFOq4wDpOOTaQOqqARgk9UCGGaIqApoGlUrNToTFc2rTKQ6UcAqAMozlvGzaHHg1hY3cufMFt1eWjTyu2BdK9EFozotgY8g2nBdiSRhAKg4UykTSS4qrCEfWZcH1s7Zt0H7IDd2cP14voQUoEhokibjFD9MKWe9d7r53cqo_JJL_iMX_wS8oYxC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522840454</pqid></control><display><type>article</type><title>Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L</title><source>Publicly Available Content Database</source><creator>Kubi, Happy Anita Appiah ; Khan, Muhammad Aaqil ; Adhikari, Arjun ; Imran, Muhammad ; Kang, Sang-Mo ; Hamayun, Muhammad ; Lee, In-Jung</creator><creatorcontrib>Kubi, Happy Anita Appiah ; Khan, Muhammad Aaqil ; Adhikari, Arjun ; Imran, Muhammad ; Kang, Sang-Mo ; Hamayun, Muhammad ; Lee, In-Jung</creatorcontrib><description>Salinity is a significant abiotic stress for crop plants and a threat to global food security. Optimizing yield without adversely affecting the ecosystem is necessary for a sustainable agriculture. Silicon and plant growth-promoting bacteria were reported for mitigating several abiotic and biotic stress in plants. In our study, we identified the salt-tolerant rhizobacterium Pseudomonas psychrotolerans CS51. This species produces several plant-growth-promoting biochemicals like indole-3-acetic acid (33 ± 1.8 ng/mL) and gibberellic acid (GA3; 38 ± 1.3 and GA4; 23 ± 1.2 ng/mL) in Luria-Bertani(LB) media, and LB media spiked with 200 mM NaCl (indole-3-acetic acid(IAA); 17.6 ± 0.4 ng/mL, GA3; 21 ± 0.9 and GA4; 19 ± 1.0 ng/mL). In the current study, we aimed to investigate the effect of isolate CS51 and exogenous silicon (3 mM) on maize under salinity stress (200 mM). Our results showed that the sole application of isolate CS51, Si, and combined CS51 + Si significantly enhanced maize biomass and chlorophyll content under normal and salinity stress. Phytohormonal results showed that salinity stress increased abscisic acid (ABA; three folds) and jasmonic acid (JA; 49.20%). However, the sole and combined isolate CS51 + Si application markedly reduced ABA (1.5 folds) and JA content (14.89%). Besides, the sole and isolate CS51 + Si co-application strengthened the antioxidant system, such as flavonoid (97%) and polyphenol (19.64%), and lowered the proline content (57.69%) under NaCl stress. Similarly, the CS51 and Si inoculation (solely or combined) significantly enhanced the Si uptake (4 folds) and reduced the Na+ uptake (42.30%) in maize plants under NaCl stress. In conclusion, the current finding suggests that combining CS51 with Si can be used against salinity stress in maize plants and may be commercialized as a biofertilizer.</description><identifier>ISSN: 2077-0472</identifier><identifier>EISSN: 2077-0472</identifier><identifier>DOI: 10.3390/agriculture11030272</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abiotic stress ; Abscisic acid ; Acetic acid ; Agricultural ecosystems ; Antioxidants ; antioxidants regulation ; Bacteria ; Biofertilizers ; Chlorophyll ; Commercialization ; Corn ; Experiments ; Flavonoids ; Food security ; Gibberellic acid ; Horticulture ; Indoleacetic acid ; Inoculation ; isolate CS51 + Si ; Jasmonic acid ; maize ; Metabolism ; Morphology ; Physiology ; phytohormones ; Plant bacterial diseases ; Plant growth ; Productivity ; Proline ; Pseudomonas ; Salinity ; Salinity effects ; salinity stress ; Salinity tolerance ; Salt ; Silicon ; Sodium chloride ; Stress ; Sustainable agriculture</subject><ispartof>Agriculture (Basel), 2021-03, Vol.11 (3), p.272</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163</citedby><cites>FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163</cites><orcidid>0000-0002-9556-2350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2522840454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2522840454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Kubi, Happy Anita Appiah</creatorcontrib><creatorcontrib>Khan, Muhammad Aaqil</creatorcontrib><creatorcontrib>Adhikari, Arjun</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Kang, Sang-Mo</creatorcontrib><creatorcontrib>Hamayun, Muhammad</creatorcontrib><creatorcontrib>Lee, In-Jung</creatorcontrib><title>Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L</title><title>Agriculture (Basel)</title><description>Salinity is a significant abiotic stress for crop plants and a threat to global food security. Optimizing yield without adversely affecting the ecosystem is necessary for a sustainable agriculture. Silicon and plant growth-promoting bacteria were reported for mitigating several abiotic and biotic stress in plants. In our study, we identified the salt-tolerant rhizobacterium Pseudomonas psychrotolerans CS51. This species produces several plant-growth-promoting biochemicals like indole-3-acetic acid (33 ± 1.8 ng/mL) and gibberellic acid (GA3; 38 ± 1.3 and GA4; 23 ± 1.2 ng/mL) in Luria-Bertani(LB) media, and LB media spiked with 200 mM NaCl (indole-3-acetic acid(IAA); 17.6 ± 0.4 ng/mL, GA3; 21 ± 0.9 and GA4; 19 ± 1.0 ng/mL). In the current study, we aimed to investigate the effect of isolate CS51 and exogenous silicon (3 mM) on maize under salinity stress (200 mM). Our results showed that the sole application of isolate CS51, Si, and combined CS51 + Si significantly enhanced maize biomass and chlorophyll content under normal and salinity stress. Phytohormonal results showed that salinity stress increased abscisic acid (ABA; three folds) and jasmonic acid (JA; 49.20%). However, the sole and combined isolate CS51 + Si application markedly reduced ABA (1.5 folds) and JA content (14.89%). Besides, the sole and isolate CS51 + Si co-application strengthened the antioxidant system, such as flavonoid (97%) and polyphenol (19.64%), and lowered the proline content (57.69%) under NaCl stress. Similarly, the CS51 and Si inoculation (solely or combined) significantly enhanced the Si uptake (4 folds) and reduced the Na+ uptake (42.30%) in maize plants under NaCl stress. In conclusion, the current finding suggests that combining CS51 with Si can be used against salinity stress in maize plants and may be commercialized as a biofertilizer.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Acetic acid</subject><subject>Agricultural ecosystems</subject><subject>Antioxidants</subject><subject>antioxidants regulation</subject><subject>Bacteria</subject><subject>Biofertilizers</subject><subject>Chlorophyll</subject><subject>Commercialization</subject><subject>Corn</subject><subject>Experiments</subject><subject>Flavonoids</subject><subject>Food security</subject><subject>Gibberellic acid</subject><subject>Horticulture</subject><subject>Indoleacetic acid</subject><subject>Inoculation</subject><subject>isolate CS51 + Si</subject><subject>Jasmonic acid</subject><subject>maize</subject><subject>Metabolism</subject><subject>Morphology</subject><subject>Physiology</subject><subject>phytohormones</subject><subject>Plant bacterial diseases</subject><subject>Plant growth</subject><subject>Productivity</subject><subject>Proline</subject><subject>Pseudomonas</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salinity stress</subject><subject>Salinity tolerance</subject><subject>Salt</subject><subject>Silicon</subject><subject>Sodium chloride</subject><subject>Stress</subject><subject>Sustainable agriculture</subject><issn>2077-0472</issn><issn>2077-0472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkd9LAzEMxw9RcOj-Al8KPp-26f3qowydg4nD0xdfSq7Xu3XcrrPtIfOv93QiPhgICUn4JOEbRReMXnEu6DW2zqihC4PTjFFOIYejaAI0z2Oa5HD8Jz-Npt5v6GiC8YJmk2goTWeU7Qn2NVl12Acyd_Y9rOOVs1sbTN-Sp7X5sBWqoJ1BsvJ6qMdWj57s_F6tnQ220w57T2ZlysiDCabFoD0psQukDE57T0xPXjWSLe49WZ5HJw12Xk9_4ln0cnf7PLuPl4_zxexmGSteFCFOq4wDpOOTaQOqqARgk9UCGGaIqApoGlUrNToTFc2rTKQ6UcAqAMozlvGzaHHg1hY3cufMFt1eWjTyu2BdK9EFozotgY8g2nBdiSRhAKg4UykTSS4qrCEfWZcH1s7Zt0H7IDd2cP14voQUoEhokibjFD9MKWe9d7r53cqo_JJL_iMX_wS8oYxC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kubi, Happy Anita Appiah</creator><creator>Khan, Muhammad Aaqil</creator><creator>Adhikari, Arjun</creator><creator>Imran, Muhammad</creator><creator>Kang, Sang-Mo</creator><creator>Hamayun, Muhammad</creator><creator>Lee, In-Jung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9556-2350</orcidid></search><sort><creationdate>20210301</creationdate><title>Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L</title><author>Kubi, Happy Anita Appiah ; Khan, Muhammad Aaqil ; Adhikari, Arjun ; Imran, Muhammad ; Kang, Sang-Mo ; Hamayun, Muhammad ; Lee, In-Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Acetic acid</topic><topic>Agricultural ecosystems</topic><topic>Antioxidants</topic><topic>antioxidants regulation</topic><topic>Bacteria</topic><topic>Biofertilizers</topic><topic>Chlorophyll</topic><topic>Commercialization</topic><topic>Corn</topic><topic>Experiments</topic><topic>Flavonoids</topic><topic>Food security</topic><topic>Gibberellic acid</topic><topic>Horticulture</topic><topic>Indoleacetic acid</topic><topic>Inoculation</topic><topic>isolate CS51 + Si</topic><topic>Jasmonic acid</topic><topic>maize</topic><topic>Metabolism</topic><topic>Morphology</topic><topic>Physiology</topic><topic>phytohormones</topic><topic>Plant bacterial diseases</topic><topic>Plant growth</topic><topic>Productivity</topic><topic>Proline</topic><topic>Pseudomonas</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salinity stress</topic><topic>Salinity tolerance</topic><topic>Salt</topic><topic>Silicon</topic><topic>Sodium chloride</topic><topic>Stress</topic><topic>Sustainable agriculture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubi, Happy Anita Appiah</creatorcontrib><creatorcontrib>Khan, Muhammad Aaqil</creatorcontrib><creatorcontrib>Adhikari, Arjun</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Kang, Sang-Mo</creatorcontrib><creatorcontrib>Hamayun, Muhammad</creatorcontrib><creatorcontrib>Lee, In-Jung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agriculture (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubi, Happy Anita Appiah</au><au>Khan, Muhammad Aaqil</au><au>Adhikari, Arjun</au><au>Imran, Muhammad</au><au>Kang, Sang-Mo</au><au>Hamayun, Muhammad</au><au>Lee, In-Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L</atitle><jtitle>Agriculture (Basel)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>272</spage><pages>272-</pages><issn>2077-0472</issn><eissn>2077-0472</eissn><abstract>Salinity is a significant abiotic stress for crop plants and a threat to global food security. Optimizing yield without adversely affecting the ecosystem is necessary for a sustainable agriculture. Silicon and plant growth-promoting bacteria were reported for mitigating several abiotic and biotic stress in plants. In our study, we identified the salt-tolerant rhizobacterium Pseudomonas psychrotolerans CS51. This species produces several plant-growth-promoting biochemicals like indole-3-acetic acid (33 ± 1.8 ng/mL) and gibberellic acid (GA3; 38 ± 1.3 and GA4; 23 ± 1.2 ng/mL) in Luria-Bertani(LB) media, and LB media spiked with 200 mM NaCl (indole-3-acetic acid(IAA); 17.6 ± 0.4 ng/mL, GA3; 21 ± 0.9 and GA4; 19 ± 1.0 ng/mL). In the current study, we aimed to investigate the effect of isolate CS51 and exogenous silicon (3 mM) on maize under salinity stress (200 mM). Our results showed that the sole application of isolate CS51, Si, and combined CS51 + Si significantly enhanced maize biomass and chlorophyll content under normal and salinity stress. Phytohormonal results showed that salinity stress increased abscisic acid (ABA; three folds) and jasmonic acid (JA; 49.20%). However, the sole and combined isolate CS51 + Si application markedly reduced ABA (1.5 folds) and JA content (14.89%). Besides, the sole and isolate CS51 + Si co-application strengthened the antioxidant system, such as flavonoid (97%) and polyphenol (19.64%), and lowered the proline content (57.69%) under NaCl stress. Similarly, the CS51 and Si inoculation (solely or combined) significantly enhanced the Si uptake (4 folds) and reduced the Na+ uptake (42.30%) in maize plants under NaCl stress. In conclusion, the current finding suggests that combining CS51 with Si can be used against salinity stress in maize plants and may be commercialized as a biofertilizer.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agriculture11030272</doi><orcidid>https://orcid.org/0000-0002-9556-2350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0472
ispartof Agriculture (Basel), 2021-03, Vol.11 (3), p.272
issn 2077-0472
2077-0472
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_23ccc0f3eb944122ac31c519479bad27
source Publicly Available Content Database
subjects Abiotic stress
Abscisic acid
Acetic acid
Agricultural ecosystems
Antioxidants
antioxidants regulation
Bacteria
Biofertilizers
Chlorophyll
Commercialization
Corn
Experiments
Flavonoids
Food security
Gibberellic acid
Horticulture
Indoleacetic acid
Inoculation
isolate CS51 + Si
Jasmonic acid
maize
Metabolism
Morphology
Physiology
phytohormones
Plant bacterial diseases
Plant growth
Productivity
Proline
Pseudomonas
Salinity
Salinity effects
salinity stress
Salinity tolerance
Salt
Silicon
Sodium chloride
Stress
Sustainable agriculture
title Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20and%20Plant%20Growth-Promoting%20Rhizobacteria%20Pseudomonas%20psychrotolerans%20CS51%20Mitigates%20Salt%20Stress%20in%20Zea%20mays%20L&rft.jtitle=Agriculture%20(Basel)&rft.au=Kubi,%20Happy%20Anita%20Appiah&rft.date=2021-03-01&rft.volume=11&rft.issue=3&rft.spage=272&rft.pages=272-&rft.issn=2077-0472&rft.eissn=2077-0472&rft_id=info:doi/10.3390/agriculture11030272&rft_dat=%3Cproquest_doaj_%3E2522840454%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-5b632253905f2c8b92af6d921a6aaac82ffcdcccdc19b07b695e4c21b22036163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522840454&rft_id=info:pmid/&rfr_iscdi=true