Loading…

3D printable tough silicone double networks

Additive manufacturing permits innovative soft device architectures with micron resolution. The processing requirements, however, restrict the available materials, and joining chemically dissimilar components remains a challenge. Here we report silicone double networks (SilDNs) that participate in o...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-08, Vol.11 (1), p.4000-4000, Article 4000
Main Authors: Wallin, Thomas J., Simonsen, Leif-Erik, Pan, Wenyang, Wang, Kaiyang, Giannelis, Emmanuel, Shepherd, Robert F., Mengüç, Yiğit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743
cites cdi_FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743
container_end_page 4000
container_issue 1
container_start_page 4000
container_title Nature communications
container_volume 11
creator Wallin, Thomas J.
Simonsen, Leif-Erik
Pan, Wenyang
Wang, Kaiyang
Giannelis, Emmanuel
Shepherd, Robert F.
Mengüç, Yiğit
description Additive manufacturing permits innovative soft device architectures with micron resolution. The processing requirements, however, restrict the available materials, and joining chemically dissimilar components remains a challenge. Here we report silicone double networks (SilDNs) that participate in orthogonal crosslinking mechanisms—photocurable thiol-ene reactions and condensation reactions—to exercise independent control over both the shape forming process (3D printing) and final mechanical properties. SilDNs simultaneously possess low elastic modulus ( E 100%  
doi_str_mv 10.1038/s41467-020-17816-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_23e05f3c48484c69bf3f833f82845467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_23e05f3c48484c69bf3f833f82845467</doaj_id><sourcerecordid>2432855970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743</originalsourceid><addsrcrecordid>eNp9kVFvFCEQx4mxsU3tF-jTJb6YmFVgZoF9MTHV1iZNfGmfCcsO1z33lgq7Nfft5W4btT4IIcDwn1-G-TN2Lvh7wcF8yChQ6YpLXglthKp2L9iJ5CjKVcLLv87H7CznDS8DGmEQX7FjkFobVesT9g4-rx5SP06uHWg1xXl9v8r90Ps40qqL8z460vQzpu_5NTsKbsh09rSfsrvLL7cXX6ubb1fXF59uKl8bmCrtGoPBO6ORSxFIcddhwI7r1jvFqTZeyU4FXteNCi26QAgE0GovtNcIp-x64XbRbWypbuvSzkbX20MgprV1aer9QFYC8TqAR1OmV00bIBgoSxqsS38K6-PCepjbLXWexim54Rn0-cvY39t1fLQahW6aPeDtEyDFHzPlyW777GkY3EhxzlYiSFN-onmRvvlHuolzGkurDiqpELQqKrmofIo5Jwq_ixHc7q21i7W2WGsP1tpdSYIlKe_NWlP6g_5P1i-9W6Pe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432264376</pqid></control><display><type>article</type><title>3D printable tough silicone double networks</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wallin, Thomas J. ; Simonsen, Leif-Erik ; Pan, Wenyang ; Wang, Kaiyang ; Giannelis, Emmanuel ; Shepherd, Robert F. ; Mengüç, Yiğit</creator><creatorcontrib>Wallin, Thomas J. ; Simonsen, Leif-Erik ; Pan, Wenyang ; Wang, Kaiyang ; Giannelis, Emmanuel ; Shepherd, Robert F. ; Mengüç, Yiğit</creatorcontrib><description>Additive manufacturing permits innovative soft device architectures with micron resolution. The processing requirements, however, restrict the available materials, and joining chemically dissimilar components remains a challenge. Here we report silicone double networks (SilDNs) that participate in orthogonal crosslinking mechanisms—photocurable thiol-ene reactions and condensation reactions—to exercise independent control over both the shape forming process (3D printing) and final mechanical properties. SilDNs simultaneously possess low elastic modulus ( E 100%  &lt; 700kPa) as well as large ultimate strains (d L/L 0 up to ~ 400 %), toughnesses ( U ~ 1.4 MJ·m −3 ), and strengths ( σ ~ 1 MPa). Importantly, the latent condensation reaction permits cohesive bonding of printed objects to dissimilar substrates with modulus gradients that span more than seven orders of magnitude. We demonstrate soft devices relevant to a broad range of disciplines: models that simulate the geometries and mechanical properties of soft tissue systems and multimaterial assemblies for next generation wearable devices and robotics. Additive manufacturing processing requirements pose restrictions on materials and joining chemically dissimilar components. Here the authors use silicone double networks that participate in orthogonal crosslinking mechanisms for independent control of the shape forming process and final mechanical properties.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-17816-y</identifier><identifier>PMID: 32778657</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/301/1005/1006 ; 639/301/923/1028 ; Additive manufacturing ; Automation ; Computer architecture ; Computer simulation ; Crosslinking ; Dissimilar materials ; Humanities and Social Sciences ; Industrial robots ; Manufacturing engineering ; Manufacturing industry ; Mechanical properties ; Modulus of elasticity ; multidisciplinary ; Networks ; Robotics ; Science ; Science (multidisciplinary) ; Silicone resins ; Silicones ; Soft tissues ; Substrates ; Three dimensional printing ; Wearable technology</subject><ispartof>Nature communications, 2020-08, Vol.11 (1), p.4000-4000, Article 4000</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743</citedby><cites>FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743</cites><orcidid>0000-0002-0631-9587 ; 0000-0001-6628-8682 ; 0000-0002-7867-0114 ; 0000-0002-1529-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2432264376/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2432264376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Wallin, Thomas J.</creatorcontrib><creatorcontrib>Simonsen, Leif-Erik</creatorcontrib><creatorcontrib>Pan, Wenyang</creatorcontrib><creatorcontrib>Wang, Kaiyang</creatorcontrib><creatorcontrib>Giannelis, Emmanuel</creatorcontrib><creatorcontrib>Shepherd, Robert F.</creatorcontrib><creatorcontrib>Mengüç, Yiğit</creatorcontrib><title>3D printable tough silicone double networks</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Additive manufacturing permits innovative soft device architectures with micron resolution. The processing requirements, however, restrict the available materials, and joining chemically dissimilar components remains a challenge. Here we report silicone double networks (SilDNs) that participate in orthogonal crosslinking mechanisms—photocurable thiol-ene reactions and condensation reactions—to exercise independent control over both the shape forming process (3D printing) and final mechanical properties. SilDNs simultaneously possess low elastic modulus ( E 100%  &lt; 700kPa) as well as large ultimate strains (d L/L 0 up to ~ 400 %), toughnesses ( U ~ 1.4 MJ·m −3 ), and strengths ( σ ~ 1 MPa). Importantly, the latent condensation reaction permits cohesive bonding of printed objects to dissimilar substrates with modulus gradients that span more than seven orders of magnitude. We demonstrate soft devices relevant to a broad range of disciplines: models that simulate the geometries and mechanical properties of soft tissue systems and multimaterial assemblies for next generation wearable devices and robotics. Additive manufacturing processing requirements pose restrictions on materials and joining chemically dissimilar components. Here the authors use silicone double networks that participate in orthogonal crosslinking mechanisms for independent control of the shape forming process and final mechanical properties.</description><subject>639/301/1005</subject><subject>639/301/1005/1006</subject><subject>639/301/923/1028</subject><subject>Additive manufacturing</subject><subject>Automation</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Crosslinking</subject><subject>Dissimilar materials</subject><subject>Humanities and Social Sciences</subject><subject>Industrial robots</subject><subject>Manufacturing engineering</subject><subject>Manufacturing industry</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>multidisciplinary</subject><subject>Networks</subject><subject>Robotics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Soft tissues</subject><subject>Substrates</subject><subject>Three dimensional printing</subject><subject>Wearable technology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kVFvFCEQx4mxsU3tF-jTJb6YmFVgZoF9MTHV1iZNfGmfCcsO1z33lgq7Nfft5W4btT4IIcDwn1-G-TN2Lvh7wcF8yChQ6YpLXglthKp2L9iJ5CjKVcLLv87H7CznDS8DGmEQX7FjkFobVesT9g4-rx5SP06uHWg1xXl9v8r90Ps40qqL8z460vQzpu_5NTsKbsh09rSfsrvLL7cXX6ubb1fXF59uKl8bmCrtGoPBO6ORSxFIcddhwI7r1jvFqTZeyU4FXteNCi26QAgE0GovtNcIp-x64XbRbWypbuvSzkbX20MgprV1aer9QFYC8TqAR1OmV00bIBgoSxqsS38K6-PCepjbLXWexim54Rn0-cvY39t1fLQahW6aPeDtEyDFHzPlyW777GkY3EhxzlYiSFN-onmRvvlHuolzGkurDiqpELQqKrmofIo5Jwq_ixHc7q21i7W2WGsP1tpdSYIlKe_NWlP6g_5P1i-9W6Pe</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Wallin, Thomas J.</creator><creator>Simonsen, Leif-Erik</creator><creator>Pan, Wenyang</creator><creator>Wang, Kaiyang</creator><creator>Giannelis, Emmanuel</creator><creator>Shepherd, Robert F.</creator><creator>Mengüç, Yiğit</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0631-9587</orcidid><orcidid>https://orcid.org/0000-0001-6628-8682</orcidid><orcidid>https://orcid.org/0000-0002-7867-0114</orcidid><orcidid>https://orcid.org/0000-0002-1529-0958</orcidid></search><sort><creationdate>20200810</creationdate><title>3D printable tough silicone double networks</title><author>Wallin, Thomas J. ; Simonsen, Leif-Erik ; Pan, Wenyang ; Wang, Kaiyang ; Giannelis, Emmanuel ; Shepherd, Robert F. ; Mengüç, Yiğit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/301/1005/1006</topic><topic>639/301/923/1028</topic><topic>Additive manufacturing</topic><topic>Automation</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Crosslinking</topic><topic>Dissimilar materials</topic><topic>Humanities and Social Sciences</topic><topic>Industrial robots</topic><topic>Manufacturing engineering</topic><topic>Manufacturing industry</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>multidisciplinary</topic><topic>Networks</topic><topic>Robotics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Soft tissues</topic><topic>Substrates</topic><topic>Three dimensional printing</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallin, Thomas J.</creatorcontrib><creatorcontrib>Simonsen, Leif-Erik</creatorcontrib><creatorcontrib>Pan, Wenyang</creatorcontrib><creatorcontrib>Wang, Kaiyang</creatorcontrib><creatorcontrib>Giannelis, Emmanuel</creatorcontrib><creatorcontrib>Shepherd, Robert F.</creatorcontrib><creatorcontrib>Mengüç, Yiğit</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallin, Thomas J.</au><au>Simonsen, Leif-Erik</au><au>Pan, Wenyang</au><au>Wang, Kaiyang</au><au>Giannelis, Emmanuel</au><au>Shepherd, Robert F.</au><au>Mengüç, Yiğit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printable tough silicone double networks</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2020-08-10</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>4000</spage><epage>4000</epage><pages>4000-4000</pages><artnum>4000</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Additive manufacturing permits innovative soft device architectures with micron resolution. The processing requirements, however, restrict the available materials, and joining chemically dissimilar components remains a challenge. Here we report silicone double networks (SilDNs) that participate in orthogonal crosslinking mechanisms—photocurable thiol-ene reactions and condensation reactions—to exercise independent control over both the shape forming process (3D printing) and final mechanical properties. SilDNs simultaneously possess low elastic modulus ( E 100%  &lt; 700kPa) as well as large ultimate strains (d L/L 0 up to ~ 400 %), toughnesses ( U ~ 1.4 MJ·m −3 ), and strengths ( σ ~ 1 MPa). Importantly, the latent condensation reaction permits cohesive bonding of printed objects to dissimilar substrates with modulus gradients that span more than seven orders of magnitude. We demonstrate soft devices relevant to a broad range of disciplines: models that simulate the geometries and mechanical properties of soft tissue systems and multimaterial assemblies for next generation wearable devices and robotics. Additive manufacturing processing requirements pose restrictions on materials and joining chemically dissimilar components. Here the authors use silicone double networks that participate in orthogonal crosslinking mechanisms for independent control of the shape forming process and final mechanical properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32778657</pmid><doi>10.1038/s41467-020-17816-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0631-9587</orcidid><orcidid>https://orcid.org/0000-0001-6628-8682</orcidid><orcidid>https://orcid.org/0000-0002-7867-0114</orcidid><orcidid>https://orcid.org/0000-0002-1529-0958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-08, Vol.11 (1), p.4000-4000, Article 4000
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_23e05f3c48484c69bf3f833f82845467
source Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1005
639/301/1005/1006
639/301/923/1028
Additive manufacturing
Automation
Computer architecture
Computer simulation
Crosslinking
Dissimilar materials
Humanities and Social Sciences
Industrial robots
Manufacturing engineering
Manufacturing industry
Mechanical properties
Modulus of elasticity
multidisciplinary
Networks
Robotics
Science
Science (multidisciplinary)
Silicone resins
Silicones
Soft tissues
Substrates
Three dimensional printing
Wearable technology
title 3D printable tough silicone double networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printable%20tough%20silicone%20double%20networks&rft.jtitle=Nature%20communications&rft.au=Wallin,%20Thomas%20J.&rft.date=2020-08-10&rft.volume=11&rft.issue=1&rft.spage=4000&rft.epage=4000&rft.pages=4000-4000&rft.artnum=4000&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-17816-y&rft_dat=%3Cproquest_doaj_%3E2432855970%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-7a984fca874021fe60ad4f4d07bca60e58c62d6f05596fb4afe43e33b7c17c743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432264376&rft_id=info:pmid/32778657&rfr_iscdi=true